Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 7 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601033 | |
Published online | 23 May 2025 |
- M. Mohamed, Agricultural Sustainability in the Age of Deep Learning: Current Trends, Challenges, and Future Trajectories. Sustainable Machine Intelligence Journal 4, 2–1 (2023). http://sciencesforce.com/index.php/smij/article/view/45 [CrossRef] [Google Scholar]
- O.D. Segun-Falade, O.S. Osundare, W.E. Kedi, P.A. Okeleke, T.I. Ijomah, O.Y. Abdul-Azeez, Utilizing machine learning algorithms to enhance predictive analytics in customer behavior studies (2024). https://www.researchgate.net/profile/Tochukwu-Ijomah-2/publication/383847908_5_Independent_Researcher_Australia_6_Independent_Researcher_USA/links/66dc4d542390e50b2c7214c1/5-Independent-Researcher-Australia-6-Independent-Researcher-USA.pdf [Google Scholar]
- O. Rozenstein, Y. Cohen, V. Alchanatis, K. Behrendt, D.J. Bonfil, G. Eshel, J. Lowenberg-DeBoer, Data-driven agriculture and sustainable farming: friends or foes?. Precision Agriculture 25(1), 520–531 (2024). https://link.springer.com/article/10.1007/s11119-023-10061-5 [CrossRef] [Google Scholar]
- K.M. Agboka, H.E. Tonnang, E.M. Abdel-Rahman, J. Odindi, O. Mutanga, S. Niassy, Data-driven artificial intelligence (AI) algorithms for modelling potential maize yield under maize-legume farming systems in East Africa. Agronomy 12(12), 3085 (2022). https://www.mdpi.com/2073-4395/12/12/3085 [CrossRef] [Google Scholar]
- E.L.X. Wen, H.M. Kang, D.M. Vistro, The Application of Machine Learning in Agriculture Sustainability: A Review. International Journal of Data Science and Advanced Analytics 4(4), 66–70. (2022). http://ijdsaa.com/index.php/welcome/article/view/94 [CrossRef] [Google Scholar]
- C.Y. Tai, W.J. Wang, Y.M. Huang, Using time-series generative adversarial networks to synthesize sensing data for pest incidence forecasting on sustainable agriculture. Sustainability 15(10), 7834 (2023). https://www.mdpi.com/2071-1050/15/10/7834 [CrossRef] [Google Scholar]
- A.K. Koshariya, P.M. Rameshkumar, P. Balaji, L.P.L. Cavaliere, V.H.R. Dornadula, B. Singh, Data-Driven Insights for Agricultural Management: Leveraging Industry 4.0 Technologies for Improved Crop Yields and Resource Optimization, in Robotics and Automation in Industry 4.0 (CRC Press, 2024), pp. 260–274. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003317456-14/data-driveninsights-agricultural-management-ashok-kumar-koshariya-rameshkumar-balaji-luigi-pioleonardo-cavaliere-venkata-harshavardhan-reddy-dornadula-barinderjit-singh [Google Scholar]
- M. Hassan, A. Kowalska, H. Ashraf, Advances in deep learning algorithms for agricultural monitoring and management. Applied Research in Artificial Intelligence and Cloud Computing 6(1), 68–88 (2023). https://core.ac.uk/download/pdf/578755758.pdf [Google Scholar]
- N. Narra, P. Nevavuori, P. Linna, T. Lipping, A data driven approach to decision support in farming, in Information Modelling and Knowledge Bases XXXI (IOS Press, 2020), pp. 175–185. https://ebooks.iospress.nl/doi/10.3233/FAIA200014 [Google Scholar]
- S.O. Araújo, R.S. Peres, J.C. Ramalho, F. Lidon, J. Barata, Machine learning applications in agriculture: current trends, challenges, and future perspectives. Agronomy 13(12), 2976 (2023). https://www.mdpi.com/2073-4395/13/12/2976 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.