Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01039
Number of page(s) 6
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601039
Published online 23 May 2025
  1. R.H.V. Corley, P.B. Tinker, The Oil Palm, 5th ed. (Wiley Blackwell, 2015) [CrossRef] [Google Scholar]
  2. L. Jiao, M.I. Abdullah, YOLO series algorithms in object detection of unmanned aerial vehicles: a survey. Service Oriented Computing and Applications (2024). https://doi.org/10.1007/s11761-023-00396-2 [Google Scholar]
  3. M. Srinivasa Rao, S. Praveen Kumar, K. Srinivasa Rao, Classification of Medical Plants Based on Hybridization of Machine Learning Algorithms. Indian Journal of Information Sources and Services 13(2), 14–21 (2023) [CrossRef] [Google Scholar]
  4. A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147, 70–90 (2018) [CrossRef] [Google Scholar]
  5. P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian Journal of Information Sources and Services 10(1), 48–55 (2020) [CrossRef] [Google Scholar]
  6. E.F. Lambin, H.K. Gibbs, R. Heilmayr, K.M. Carlson, L.C. Fleck, R.D. Garrett, … N.F. Walker, The role of supply-chain initiatives in reducing deforestation. Nature Climate Change 8(2), 109–116 (2018) [CrossRef] [Google Scholar]
  7. K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. Journal of Internet Services and Information Security 13(4), 158–169 (2023) [CrossRef] [Google Scholar]
  8. B. Liu, Y. Zhang, D. He, Y. Li, Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 10(1), 11 (2018) [Google Scholar]
  9. A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. Journal of Internet Services and Information Security 12(4), 177–196 (2022) [CrossRef] [Google Scholar]
  10. K. Malathi, R. Anandan, J.F. Vijay, Cloud Environment Task Scheduling Optimization of Modified Genetic Algorithm. Journal of Internet Services and Information Security 13(1), 34–43 (2023) [CrossRef] [Google Scholar]
  11. P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 11(4), 77–96 (2020) [Google Scholar]
  12. S.P. Mohanty, D.P. Hughes, M. Salathé, Using deep learning for image-based plant disease detection. Frontiers in Plant Science 7, 1419 (2016) [CrossRef] [PubMed] [Google Scholar]
  13. K. Veerasamy, E.J.T. Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 14(4), 45–59 (2023) [CrossRef] [Google Scholar]
  14. S.A. Nusaibah, M. Sariah, L. Zakaria, M.T. Yusof, Detection of Ganoderma boninense in oil palm seedlings by using GanoSken kit. Journal of Plant Protection Research 56(3), 268–273 (2016) [Google Scholar]
  15. Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Natural and Engineering Sciences 8(3), 214–232 (2023) [CrossRef] [Google Scholar]
  16. T.D. Pham, H.T. Tran, T.T. Le, Random forest and deep learning techniques for detection of rice diseases and pests based on spectral images. Computers and Electronics in Agriculture 160, 58–65 (2019) [Google Scholar]
  17. T.C. Thirunavukkarasu, S. Thanuskodi, N. Suresh, Trends and Patterns in Collaborative Authorship: Insights into Advancing Seed Technology Research. Indian Journal of Information Sources and Services 14(1), 71–77 (2024) [CrossRef] [Google Scholar]
  18. F. Rustam, M. Khalid, M. Asif, G.S. Choi, Crop disease detection using machine learning: A review. Computers and Electronics in Agriculture 180, 105893 (2021) [CrossRef] [Google Scholar]
  19. L. Alamer, I.M. Alqahtani, E. Shadadi, Intelligent Health Risk and Disease Prediction Using Optimized Naive Bayes Classifier. Journal of Internet Services and Information Security 13(1), 01–10 (2023) [CrossRef] [Google Scholar]
  20. S. Zhang, W. Huang, C. Zhang, C. Peng, Q. Dong, Plant disease recognition based on plant leaf image. Symmetry 11(9), 1168 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.