Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01041
Number of page(s) 14
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601041
Published online 23 May 2025
  1. D. Wallach, D. Makowski, J.W. Jones, F. Brun, Working with dynamic crop models: methods, tools and examples for agriculture and environment (Academic Press, 2018) [Google Scholar]
  2. S.K.S. Durai, M.D. Shamili, Smart farming using machine learning and deep learning techniques. Decision Analytics Journal 3, 100041 (2022). https://doi.org/10.1016/j.daj.2022.100041 [CrossRef] [Google Scholar]
  3. S. Khaki, L. Wang, S.V. Archontoulis, A CNN-RNN framework for crop yield prediction. Frontiers in Plant Science 10, 1750 (2020). https://doi.org/10.3389/fpls.2019.01750 [CrossRef] [Google Scholar]
  4. A. Oikonomidis, C. Catal, A. Kassahun, Hybrid deep learning-based models for crop yield prediction. Applied Artificial Intelligence 36(1), 2031822 (2022). https://doi.org/10.1080/08839514.2022.2031823 [CrossRef] [Google Scholar]
  5. M. Mareli, B. Twala, An adaptive Cuckoo search algorithm for optimisation. Applied Computing and Informatics 14(2), 107–115 (2018). https://doi.org/10.1016/j.aci.2017.09.001 [CrossRef] [Google Scholar]
  6. A. Rath, S. Samantaray, P.C. Swain, Optimization of the cropping pattern using cuckoo search technique, in Smart Techniques for a Smarter Planet: Towards Smarter Algorithms (2019), pp. 19–35. https://doi.org/10.1007/978-3-030-03131-2_2 [CrossRef] [Google Scholar]
  7. S.B. Kamatchi, R. Parvathi, Improvement of crop production using recommender system by weather forecasts. Procedia Computer Science 165, 724–732 (2019). https://doi.org/10.1016/j.procs.2020.01.067 [CrossRef] [Google Scholar]
  8. A. Motwani, P. Patil, V. Nagaria, S. Verma, S. Ghane, Soil analysis and crop recommendation using machine learning, in 2022 International Conference for Advancement in Technology (ICONAT) (2022), pp. 1–7. https://doi.org/10.1109/ICONAT53402.2022.9725901 [Google Scholar]
  9. P. Tiwari, P. Shukla, Crop yield prediction by modified convolutional neural network and geographical indexes. International Journal of Computer Sciences and Engineering 6(8), 503–513 (2018) [CrossRef] [Google Scholar]
  10. A.K.S.U. Gökhan, C.O. Güzeller, M.T. Eser, The effect of the normalization method used in different sample sizes on the success of artificial neural network model. International Journal of Assessment Tools in Education 6(2), 170–192 (2019). https://doi.org/10.21449/ijate.479404 [CrossRef] [Google Scholar]
  11. D. Rajendran, S. Vigneshwari, Design of agricultural ontology based on levy flight distributed optimization and Naïve Bayes classifier. Sādhanā 46, 1–12 (2021). https://doi.org/10.1007/s12046-021-01652-x [Google Scholar]
  12. H. Jiang, C. Zhang, Y. Qiao, Z. Zhang, W. Zhang, C. Song, CNN feature based graph convolutional network for weed and crop recognition in smart farming. Computers and Electronics in Agriculture 174, 105450 (2020). https://doi.org/10.1016/j.compag.2020.105450 [CrossRef] [Google Scholar]
  13. A. Khamparia, A. Singh, A.K. Luhach, B. Pandey, D.K. Pandey, Classification and identification of primitive Kharif crops using supervised deep convolutional networks. Sustainable Computing: Informatics and Systems 28, 100340 (2020). https://doi.org/10.1016/j.suscom.2019.100340 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.