Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01045 | |
Number of page(s) | 9 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601045 | |
Published online | 23 May 2025 |
- D. I. Patrício, R. Rieder, Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018). https://doi.org/10.1016/j.compag.2018.07.039 [CrossRef] [Google Scholar]
- Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8(3), 214–232 (2023). https://doi.org/10.28978/nesciences.1405175 [Google Scholar]
- S. M. Kolur, A. Burud, M. Ramasamy, V. Sampath, S. R. Chellem, S. N. Satapathy, A. Rout, A review on biotech innovations in seed technology for robust crop production. J. Adv. Biol. Biotechnol. 27, 535–550 (2024) [CrossRef] [Google Scholar]
- D. Tirkey, K.K. Singh, S. Tripathi, Performance analysis of AI-based solutions for crop disease identification, detection, and classification. Smart Agric. Technol. 5, 100238 (2023). https://doi.org/10.1016/j.atech.2023.100238 [CrossRef] [Google Scholar]
- P. K. Paul, R. R. Sinha, P. S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10(1), 48–55 (2020) [Google Scholar]
- G. M. Nabeesab Mamdapur, M. B. Hadimani, A. K. Sheik, E. Senel, The Journal of Horticultural Science and Biotechnology (2008-2017): A Scientometric Study. Indian J. Inf. Sources Serv. 9(1), 76–84 (2019) [Google Scholar]
- M. Rao, S. Kumar, K. Rao, Effective medical leaf identification using hybridization of GMM-CNN. Int. J. Exp. Res. Rev. 32, 115–123 (2023) [CrossRef] [Google Scholar]
- S. Fountas, D. Wulfsohn, B. Blackmore, H. Jacobsen, Agricultural automation: The role of IoT in precision farming. Agric. Syst. 136, 78–85 (2015). https://doi.org/10.1016/j.agsy.2015.01.001 [Google Scholar]
- H. Mumtaj Begum, Scientometric Analysis of the Research Paper Output on Artificial Intelligence: A Study. Indian J. Inf. Sources Serv. 12(1), 52–58 (2022) [Google Scholar]
- K. Veerasamy, E.J. Thomson Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14(4), 45–59 (2023) [Google Scholar]
- L. García, L. Parra, J. M. Jimenez, J. Lloret, P. Lorenz, IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 20(4), 1042 (2020). https://doi.org/10.3390/s20041042 [CrossRef] [PubMed] [Google Scholar]
- A.E. Muawia, A New Approach to Detect DoS Attacks in Internet of Things (IoT). J. Internet Serv. Inf. Secur. 14(3), 1–17 (2024) [Google Scholar]
- P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 11(4), 77–96 (2020) [Google Scholar]
- A. Radhika, M. S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12(4), 177–196 (2022) [Google Scholar]
- S. Munusamy, S. N. S. Al-Humairi, M. I. Abdullah, Automatic irrigation system: Design and implementation, in Proceedings of the IEEE 11th Symposium on Computer Applications and Industrial Electronics (ISCAIE), 256–260 (2021) [Google Scholar]
- K. Veerasamy, E. T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J. Internet Serv. Inf. Secur. 13(4), 158–169 (2023) [Google Scholar]
- R. K. Singh, R. Berkvens, M. Weyn, AgriFusion: An architecture for IoT and emerging technologies based on a precision agriculture survey. IEEE Access 9, 136253–136283 (2021) [CrossRef] [Google Scholar]
- A. Dessy, D. Ratna, S. Leni, D. Yadi Heryadi, S. Fatma, I.S.I. Gede, R. Robbi, Using Distance Measure to Perform Optimal Mapping with the K-Medoids Method on Medicinal Plants, Aromatics, and Spices Export. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14(3), 103–111 (2023) [Google Scholar]
- T. Robles, R. Alcarria, D.M. De Andrés, M.N. De la Cruz, R. Calero, S. Iglesias, M. Lopez, An IoT based reference architecture for smart water management processes. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 6(1), 4–23 (2015) [Google Scholar]
- R. Akila, J. B. Merin, A. Radhika, N.K. Behera, Human Activity Recognition Using Ensemble Neural Networks and The Analysis of Multi-Environment Sensor Data Within Smart Environments. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14(3), 218–229 (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.