Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01048 | |
Number of page(s) | 6 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601048 | |
Published online | 23 May 2025 |
- Z. Al-Ameen, G. Sulong, M.G. Md Johar, Employing a suitable contrast enhancement technique as a pre-restoration adjustment phase for computed tomography medical images. Int. J. Bio-Sci. Bio-Technol. 5(1) (2013). https://gvpress.com/journals/IJBSBT/vol5_no1/7.pdf [Google Scholar]
- C. Zhou, H. Ye, J. Hu, X. Shi, S. Hua, J. Yue, G. Yang, Automated counting of rice panicle by applying deep learning model to images from unmanned aerial vehicle platform. Sensors 19(14), 3106 (2019). https://www.mdpi.com/1424-8220/19/14/3106 [CrossRef] [Google Scholar]
- P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10(1), 48–55 (2020). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3764184 [Google Scholar]
- J.P. Dandois, E.C. Ellis, Crowdsourcing and community-based data collection for agricultural research: Applications in plant disease monitoring. J. Agric. Inform. 12(3), 112–126 (2021). https://doi.org/10.1016/j.compag.2017.08.026 [Google Scholar]
- K.P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018). https://www.sciencedirect.com/science/article/pii/S0168169917311742 [CrossRef] [Google Scholar]
- M. Murat, S.W. Chang, A. Abu, H.J. Yap, K.T. Yong, Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach. PeerJ 5, e3792 (2017). https://peerj.com/articles/3792/ [CrossRef] [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016). http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html [Google Scholar]
- A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12(4), 177–196 (2022). https://jisis.org/wp-content/uploads/2023/01/I4.013.pdf [Google Scholar]
- A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2012). https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html [Google Scholar]
- K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). https://arxiv.org/abs/1409.1556 [Google Scholar]
- K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J. Internet Serv. Inf. Secur. 13(4), 158–169 (2023). https://books.google.com/books?hl=en&lr=&id=js8LEQAAQBAJ&oi=fnd&pg=PA160 [Google Scholar]
- X. Wang, W. Yang, Q. Lv, C. Huang, X. Liang, G. Chen, L. Duan, Field rice panicle detection and counting based on deep learning. Front. Plant Sci. 13, 966495 (2022). https://www.frontiersin.org/articles/10.3389/fpls.2022.966495/full [CrossRef] [Google Scholar]
- K. Veerasamy, E.J.T. Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14(4), 45–59 (2023). https://jowua.com/wpcontent/uploads/2023/12/2023.I4.004.pdf [Google Scholar]
- M.M. Ubaid, M.S. Sana, K. Salim, S. Khalid, I. Batool, S.H. Gilani, S.S. Gilani, UAVs Path Planning Using Visual-SLAM Technique Based Hybrid Particle Swarm Optimization. J. Smart Internet Things 2023(2), 133–141 (2023). https://sciendo.com/pdf/10.2478/jsiot-2023-0016 [CrossRef] [Google Scholar]
- P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 11(4), 77–96 (2020). https://jowua.com/wp-content/uploads/2022/12/jowua-v11n4-6.pdf [Google Scholar]
- H. Singh, A. Sharma, S.K. Bhardwaj, S.K. Arya, N. Bhardwaj, M. Khatri, Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process. Impacts 23(2), 213–239 (2021). https://pubs.rsc.org/en/content/articlehtml/2021/em/d0em00404a [CrossRef] [Google Scholar]
- Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8(3), 214–232 (2023). https://dergipark.org.tr/en/pub/nesciences/issue/81369/1405175 [Google Scholar]
- Y. Wang, L. Xu, J. Li, Z. Ren, W. Liu, Y. Ai, Y. Zhang, Multi-output neural network model for predicting biochar yield and composition. Sci. Total Environ. 945, 173942 (2024). https://www.sciencedirect.com/science/article/pii/S0048969724040907 [CrossRef] [Google Scholar]
- S.A. Zaidi, V. Chouvatut, Mae Mai Muay Thai Style Classification in Movement Appling Long-Term Recurrent Convolution Networks. J. Internet Serv. Inf. Secur. 13(1), 95–112 (2023). https://jisis.org/wp-content/uploads/2023/03/2023.I1.010.pdf [Google Scholar]
- K. Takahashi, P.T.A. Thu, H. Irie, T. Yamada, Development of a low-cost small drone-based laser-scanner system for rice monitoring, in Proceedings of the ACRS, Citeseer (2015). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1d32f32f7ed8cc84ee7f65a6e3f5e8fb54897b12 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.