Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01052
Number of page(s) 7
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601052
Published online 23 May 2025
  1. A. Mohamed, W. Liu, N. Bassim, Characterization of Cyclically Deformed Persistence Slip Bands and Ladder like PSB's in Copper Grain Structure. Int. J. Eng. Sci. 2, 12 (2013) [Google Scholar]
  2. P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10, 48–55 (2020) [Google Scholar]
  3. K. Dissanayake, M.G.M. Johar, N.H. Ubeysekara, Data mining techniques in disease classification: Descriptive bibliometric analysis and visualization of global publications. Int. J. Comput. Digit. Syst. 13, 289–301 (2023) [CrossRef] [Google Scholar]
  4. A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12, 177–196 (2022) [Google Scholar]
  5. Y. Gao, J. Liu, Y. Zhang, Integration of deep learning and IoT for precision irrigation in agriculture. Sensors 22, 4513 (2022). https://doi.org/10.3390/s22124513 [CrossRef] [Google Scholar]
  6. K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J. Internet Serv. Inf. Secur. 13, 158–169 (2023) [Google Scholar]
  7. S. Kumar, A. Sinha, N. Yadav, Machine learning approaches for smart irrigation systems: Current trends and future directions. J. Agric. Inform. 14, 45–59 (2023). https://doi.org/10.1016/j.agriinf.2022.102923 [Google Scholar]
  8. T.H. Kim, A.A. AlZubi, AI-enhanced precision irrigation in legume farming: Optimizing water use efficiency. Legume Res. 47, 1382–1389 (2024) [Google Scholar]
  9. P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 11, 77–96 (2020) [Google Scholar]
  10. J.R. Miller, K.R. Thompson, AI-driven smart irrigation systems for sustainable agriculture. Comput. Electron. Agric. 203, 107362 (2023). https://doi.org/10.1016/j.compag.2022.107362 [Google Scholar]
  11. K. Veerasamy, E.J.T. Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14, 45–59 (2023) [Google Scholar]
  12. P. Ashoka, B.R. Devi, N. Sharma, M. Behera, A. Gautam, A. Jha, G. Sinha, Artificial Intelligence in Water Management for Sustainable Farming: A Review. J. Sci. Res. Rep. 30, 511–525 (2024) [CrossRef] [Google Scholar]
  13. Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8, 214–232 (2023) [Google Scholar]
  14. H. Kamyab, T. Khademi, S. Chelliapan, M. SaberiKamarposhti, S. Rezania, M. Yusuf, Y. Ahn, The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource management. Results Eng. 20, 101566 (2023) [CrossRef] [Google Scholar]
  15. H. Mumtaj Begum, Scientometric Analysis of the Research Paper Output on Artificial Intelligence: A Study. Indian J. Inf. Sources Serv. 12, 52–58 (2022) [Google Scholar]
  16. L.H. Medida, G.L.N.V.S. Kumar, Harnessing Artificial Intelligence and Data Science for Sustainable Water Management and Irrigation, in Artificial Intelligence and Data Science for Sustainability: Applications and Methods (IGI Global Scientific Publishing, 2025), pp. 323–346 [Google Scholar]
  17. T. Robles, R. Alcarria, D.M. De Andrés, M.N. De la Cruz, R. Calero, S. Iglesias, M. Lopez, An IoT based reference architecture for smart water management processes. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 6, 4–23 (2015) [Google Scholar]
  18. O. Iseyemi, M.L. Reba, L. Haas, E. Leonard, J. Farris, Water quality characteristics of tailwater recovery systems associated with agriculture production in the mid-southern US. Agric. Water Manag. 249, 106775 (2021) [CrossRef] [Google Scholar]
  19. T. Velden, A.U. Haque, C. Lagoze, A new approach to analyzing patterns of collaboration in coauthorship networks: mesoscopic analysis and interpretation. Scientometrics 85, 219–242 (2010) [CrossRef] [Google Scholar]
  20. T. Zhao, L. Zhang, Q. Yu, Real-time water usage optimization in agriculture using AI technologies. J. Agric. Food Chem. 71, 3450–3462 (2023). https://doi.org/10.1021/acs.jafc.2c07387 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.