Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01054
Number of page(s) 7
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601054
Published online 23 May 2025
  1. L. Alamer, E. Shadadi, DDoS Attack Detection using Long-short Term Memory with Bacterial Colony Optimization on IoT Environment. J. Internet Serv. Inf. Secur. 13, 44–53 (2023). https://jisis.org/wp-content/uploads/2023/03/2023.I1.005.pdf [Google Scholar]
  2. P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10, 48–55 (2020). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3764184 [Google Scholar]
  3. S. Bargoti, J. Underwood, Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34, 1039–1060 (2017). https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21699 [CrossRef] [Google Scholar]
  4. A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12, 177–196 (2022). https://jisis.org/wp-content/uploads/2023/01/I4.013.pdf [Google Scholar]
  5. R. Careem, G. Johar, A. Khatibi, Deep neural networks optimization for resource-constrained environments: techniques and models. Indones. J. Electr. Eng. Comput. Sci. 33, 1843–1854 (2024). https://www.researchgate.net/profile/Raafi-Careem-2/publication/387663130_Deep_neural_networks_optimization_for_resourceconstrained_environments_techniques_and_models/links/6776947d894c5520853e1235/Deepneural-networks-optimization-for-resource-constrained-environments-techniques-andmodels.pdf [Google Scholar]
  6. K. Veerasamy, E.T. Fredrik, Intelligent Farming based on Uncertainty Expert System with Butterfly Optimization Algorithm for Crop Recommendation. J. Internet Serv. Inf. Secur. 13, 158–169 (2023). https://books.google.com/books?hl=en&lr=&id=js8LEQAAQBAJ&oi=fnd&pg=PA160&dq=Veerasamy,+K.,+%26+Fredrik,+E.+T.+(2023).+Intelligent+Farming+based+on+Uncertainty+Expert+System+with+Butterfly+Optimization+Algorithm+for+Crop+Recommendation.+Journal+of+Internet+Services+and+Information+Security,+13(4),+158-169.&ots=DGhp1ixCtG&sig=GoZP6HE_lQC8yze4kCvvgB22iRs [Google Scholar]
  7. P.Ş. Toraman, N. Ergün, B. Çalıcı, Some abiotic stress on growth and lipid peroxidation on wheat seedlings. Nat. Eng. Sci. 5, 144–154 (2020). https://dergipark.org.tr/en/pub/nesciences/article/832975 [Google Scholar]
  8. P. Zapotezny-Anderson, C. Lehnert, Towards active robotic vision in agriculture: A deep learning approach to visual servoing in occluded and unstructured protected cropping environments. IFACPapersOnLine 52, 120–125 (2019). https://www.sciencedirect.com/science/article/pii/S2405896319324243 [Google Scholar]
  9. K. Veerasamy, E.J.T. Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 14, 45–59 (2023). https://jowua.com/wpcontent/uploads/2023/12/2023.I4.004.pdf [CrossRef] [Google Scholar]
  10. A.M. Roy, J. Bhaduri, A deep learning enabled multi-class plant disease detection model based on computer vision. Ai 2, 413–428 (2021). https://www.mdpi.com/2673-2688/2/3/26 [CrossRef] [Google Scholar]
  11. S.A. Munir, B. Ren, W. Jiao, B. Wang, D. Xie, J. Ma, Mobile wireless sensor network: Architecture and enabling technologies for ubiquitous computing, in Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW'07), May (2007), Vol. 2, 113–120 [CrossRef] [Google Scholar]
  12. P. Angin, M.H. Anisi, F. Göksel, C. Gürsoy, A. Büyükgülcü, Agrilora: a digital twin framework for smart agriculture. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 11, 77–96 (2020). https://jowua.com/wp-content/uploads/2022/12/jowua-v11n4-6.pdf [Google Scholar]
  13. I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, C. McCool, DeepFruits: A fruit detection system using deep neural networks. Sensors 16, 1222 (2016). https://www.mdpi.com/1424-8220/16/8/1222 [CrossRef] [PubMed] [Google Scholar]
  14. Y. Camgözlü, Y. Kutlu, Leaf Image Classification Based on Pre-trained Convolutional Neural Network Models. Nat. Eng. Sci. 8, 214–232 (2023). https://dergipark.org.tg.tr/en/pub/nesciences/issue/81369/1405175 [Google Scholar]
  15. S.A. Zaidi, V. Chouvatut, Mae Mai Muay Thai Style Classification in Movement Appling Long-Term Recurrent Convolution Networks. J. Internet Serv. Inf. Secur. 13, 95–112 (2023). https://jisis.org/wp-content/uploads/2023/03/2023.I1.010.pdf [Google Scholar]
  16. P.P. Shinde, S. Shah, A review of machine learning and deep learning applications, in Proceedings of the International Conference on Inventive Research in Computing Applications (ICIRCA), (2018), 1–5 [Google Scholar]
  17. G.M. Nabeesab Mamdapur, M.B. Hadimani, A.K. Sheik, E. Senel, The Journal of Horticultural Science and Biotechnology (2008-2017): A Scientometric Study. Indian J. Inf. Sources Serv. 9, 76–84 (2019). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4342662 [Google Scholar]
  18. B.S. Riza, R. Yunita, R. Rosnelly, Comparative Analysis of LSTM and BiLSTM in Image Detection Processing. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. (to be published). https://jowua.com/wp-content/uploads/2024/03/2024.I1.017.pdf [Google Scholar]
  19. S.M. Kolur, A. Burud, M. Ramasamy, V. Sampath, S.R. Chellem, S.N. Satapathy, A. Rout, A review on biotech innovations in seed technology for robust crop production. J. Adv. Biol. Biotechnol. 27, 535–550 (2024). https://www.researchgate.net/profile/Shruti-Mallikarjun-Kolur/publication/379937840_A_Review_on_Biotech_Innovations_in_Seed_Technology_for_Robust_Crop_Production/links/667fe5b7714e0b0315338d7e/A-Review-on-Biotech-Innovationsin-Seed-Technology-for-Robust-Crop-Production.pdf [CrossRef] [Google Scholar]
  20. A. Kazi, S.P. Panda, Determining the freshness of fruits in the food industry by image classification using transfer learning. Multimed. Tools Appl. 81, 7611–7624 (2022). https://link.springer.com/article/10.1007/s11042-022-12150-5 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.