Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01056 | |
Number of page(s) | 13 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601056 | |
Published online | 23 May 2025 |
- PS A.L.H., M. Shafiulla, S.M. Naveed, S. Ahmed, S.M. Nawaz, U. Kumar, Home Automation Using Wi-Fi: ESP32-Based System for Remote Control and Environmental Monitoring, in Proceedings of the 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), April (2024), pp. 1–7 [Google Scholar]
- A. Radhika, M.S. Masood, Crop Yield Prediction by Integrating Et-DP Dimensionality Reduction and ABP-XGBOOST Technique. J. Internet Serv. Inf. Secur. 12, 177–196 (2022). https://jisis.org/wp-content/uploads/2023/01/I4.013.pdf [Google Scholar]
- S.R. Williams, A. Agrahari Baniya, M.S. Islam, K. Murphy, A Data Ecosystem for Orchard Research and Early Fruit Traceability. Horticulturae 9, 1013 (2023). https://www.mdpi.com/2311-7524/9/9/1013 [CrossRef] [Google Scholar]
- K. Veerasamy, E.J. Thomson Fredrik, Intelligence System towards Identify Weeds in Crops and Vegetables Plantation Using Image Processing and Deep Learning Techniques. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 14, 45–59 (2023). https://jowua.com/wpcontent/uploads/2023/12/2023.I4.004.pdf [Google Scholar]
- S. Darvishpoor, A. Darvishpour, M. Escarcega, M. Hassanalian, Nature-inspired algorithms from oceans to space: A comprehensive review of heuristic and meta-heuristic optimization algorithms and their potential applications in drones. Drones 7, 427 (2023). https://www.mdpi.com/2504-446X/7/7/427 [CrossRef] [Google Scholar]
- P. Lemenkova, GMT-based geological mapping and assessment of the bathymetric variations of the Kuril-Kamchatka Trench, Pacific Ocean. Nat. Eng. Sci. 5, 1–17 (2020). https://dergipark.org.tr/en/pub/nesciences/article/691708 [Google Scholar]
- A.K. Singh, B.J. Balabaygloo, B. Bekee, S.W. Blair, S. Fey, F. Fotouhi, C. Valdivia, Smart Connected Farms and Networked Farmers to Improve Crop Production, Sustainability and Profitability. Front. Agron. 6, 1410829 (2024). https://www.frontiersin.org/articles/10.3389/fagro.2024.1410829/full [CrossRef] [Google Scholar]
- P.K. Paul, R.R. Sinha, P.S. Aithal, B. Aremu, R. Saavedra, Agricultural Informatics: An Overview of Integration of Agricultural Sciences and Information Science. Indian J. Inf. Sources Serv. 10, 48–55 (2020). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3764184 [Google Scholar]
- M.F. Aslan, A. Durdu, K. Sabanci, E. Ropelewska, S.S. Gültekin, A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Appl. Sci. 12, 1047 (2022). https://www.mdpi.com/2076-3417/12/3/1047 [CrossRef] [Google Scholar]
- F. Fuentes-Peñailillo, K. Gutter, R. Vega, G.C. Silva, Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. J. Sens. Actuator Netw. 13, 39 (2024). https://www.mdpi.com/2224-2708/13/4/39 [CrossRef] [Google Scholar]
- C.R. Rice, S.T. McDonald, Y. Shi, H. Gan, W.S. Lee, Y. Chen, Z. Wang, Perception, path planning, and flight control for a drone-enabled autonomous pollination system. Robotics 11, 144 (2022). https://www.mdpi.com/2218-6581/11/6/144 [CrossRef] [Google Scholar]
- A. Dingley, S. Anwar, P. Kristiansen, N.W. Warwick, C.H. Wang, B.M. Sindel, C.I. Cazzonelli, Precision pollination strategies for advancing horticultural tomato crop production. Agronomy 12, 518 (2022). https://www.mdpi.com/2073-4395/12/2/518 [CrossRef] [Google Scholar]
- H. Ding, B. Zhang, J. Zhou, Y. Yan, G. Tian, B. Gu, Recent developments and applications of simultaneous localization and mapping in agriculture. J. Field Robot. 39, 956–983 (2022). https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22077 [CrossRef] [Google Scholar]
- M.S. Sheela, S. Gopalakrishnan, I.P. Begum, J.J. Hephzipah, M. Gopianand, D. Harika, Enhancing Energy Efficiency With Smart Building Energy Management System Using Machine Learning and IOT. Babylon. J. Mach. Learn. 2024, 80–88 (2024). https://mesopotamian.press/journals/index.php/BJML/article/view/423 [CrossRef] [Google Scholar]
- M.S. Sheela, S.R. Chand, S. Gopalakrishnan, M. Gopianand, J.J. Hephzipah, Empowering Aquarists a Comprehensive Study On IOT-Enabled Smart Aquarium Systems For Remote Monitoring And Control. Babylon. J. Internet Things 2024, 33–43 (2024). https://mesopotamian.press/journals/index.php/BJIoT/article/view/422 [CrossRef] [Google Scholar]
- E.K. Ruby, G. Amirthayogam, G. Sasi, T. Chitra, A. Choubey, S. Gopalakrishnan, Advanced Image Processing Techniques for Automated Detection of Healthy and Infected Leaves in Agricultural Systems. Mesopotamian J. Comput. Sci. 2024, 62–70 (2024). https://journals.mesopotamian.press/index.php/cs/article/view/444 [Google Scholar]
- A. Soularidis, K.Ι. Kotis, G.A. Vouros, Real-Time Semantic Data Integration and Reasoning in Life-and Time-Critical Decision Support Systems. Electronics 13, 526 (2024). https://www.mdpi.com/2079-9292/13/3/526 [CrossRef] [Google Scholar]
- L. Li, X. Yang, Inspection Path Optimization of the Agricultural Unmanned Aerial Vehicle Based on the Improved PSO Algorithm. J. Eng. Sci. Technol. Rev. 16(5) (2023). http://www.jestr.org/downloads/Volume16Issue5/fulltext111652023.pdf [Google Scholar]
- A. Fascista, Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors 22, 1824 (2022). https://www.mdpi.com/1424-8220/22/5/1824 [CrossRef] [Google Scholar]
- B. Tang, Z. Guo, C. Huang, S. Huai, J. Gai, A Fruit-Tree Mapping System for Semi-Structured Orchards based on Multi-Sensor-Fusion SLAM. IEEE Access (2024). https://ieeexplore.ieee.org/abstract/document/10552185/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.