Open Access
Issue
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
Article Number 01061
Number of page(s) 10
Section Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development
DOI https://doi.org/10.1051/shsconf/202521601061
Published online 23 May 2025
  1. S. Bhunia, A. Bhowmik, R. Mallick, J. Mukherjee, Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy 11(5), 823 (2021). https://www.academia.edu/download/100810312/pdf.pdf [CrossRef] [Google Scholar]
  2. S. Sarkar, M. Skalicky, A. Hossain, M. Brestic, S. Saha, S. Garai, K. Brahmachari, Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability 12(23), 9808 (2020). https://www.mdpi.com/2071-1050/12/23/9808 [CrossRef] [Google Scholar]
  3. D. Katkani, A. Babbar, V.K. Mishra, A. Trivedi, S. Tiwari, R.K. Kumawat, A review of applications and utility of remote sensing and geographic information systems in agriculture and natural resource management. Int. J. Environ. Climate Change 12(4), 1–18 (2022). https://www.academia.edu/download/85109362/57526.pdf [CrossRef] [Google Scholar]
  4. J.L. Havlin, Soil: Fertility and nutrient management, in Landscape and land capacity (CRC Press, 2020), pp. 251–265. https://www.academia.edu/download/85109362/57526.pdf [CrossRef] [Google Scholar]
  5. R. Dhakar, V.K. Sehgal, D. Chakraborty, R.N. Sahoo, J. Mukherjee, A.V. Ines, S.B. Roy, Fieldscale spatial wheat yield forecasting system under limited field data availability by integrating crop simulation model with the weather forecast and satellite remote sensing. Agric. Syst. 195, 103299 (2022). https://www.sciencedirect.com/science/article/pii/S0308521X21002523 [CrossRef] [Google Scholar]
  6. J. Rurinda, S. Zingore, J.M. Jibrin, T. Balemi, K. Masuki, J.A. Andersson, P.Q. Craufurd, Science-based decision support for formulating crop fertilizer recommendations in sub-Saharan Africa. Agric. Syst. 180, 102790 (2020). https://www.sciencedirect.com/science/article/pii/S0308521X19309540 [CrossRef] [Google Scholar]
  7. A. Monteiro, S. Santos, P. Gonçalves, Precision agriculture for crop and livestock farming—Brief review. Animals 11(8), 2345 (2021). https://repositorio.ipv.pt/server/api/core/bitstreams/5990925b-c168-4a72-bde2-b511169ca0b3/content [CrossRef] [PubMed] [Google Scholar]
  8. B.G. Hopkins, J.C. Stark, K.A. Kelling, Nutrient management, in Potato production systems (Springer, 2020), pp. 155–202. https://link.springer.com/chapter/10.1007/978-3-030-39157-7_8 [CrossRef] [Google Scholar]
  9. A. Dobermann, T. Bruulsema, I. Cakmak, B. Gerard, K. Majumdar, M. McLaughlin, X. Zhang, Responsible plant nutrition: A new paradigm to support food system transformation. Global Food Security 33, 100636 (2022). https://www.sciencedirect.com/science/article/pii/S221191242200027X [CrossRef] [Google Scholar]
  10. M. Hassan, A. Kowalska, H. Ashraf, Advances in deep learning algorithms for agricultural monitoring and management. Appl. Res. Artif. Intell. Cloud Comput. 6(1), 68–88 (2023). https://core.ac.uk/download/pdf/578755758.pdf [Google Scholar]
  11. A.G. Schut, K.E. Giller, Soil-based, field-specific fertilizer recommendations are a pipe dream. Geoderma 380, 114680 (2020). https://www.sciencedirect.com/science/article/pii/S0016706120314750 [CrossRef] [Google Scholar]
  12. V. Sharma, S. Irmak, Comparative analyses of variable and fixed rate irrigation and nitrogen management for maize in different soil types: Part I. Impact on soil-water dynamics and crop evapotranspiration. Agric. Water Manag. 245, 106644 (2021). https://www.sciencedirect.com/science/article/pii/S0378377420321880 [Google Scholar]
  13. M. Kazlauskas, I. Bručienė, A. Jasinskas, E. Šarauskis, Comparative analysis of energy and GHG emissions using fixed and variable fertilization rates. Agronomy 11(1), 138 (2021). https://www.mdpi.com/2073-4395/11/1/138 [CrossRef] [Google Scholar]
  14. M. Sujatha, C.D. Jaidhar, Machine learning-based approaches to enhance the soil fertility—A review. Expert Syst. Appl. 122557 (2023). https://www.sciencedirect.com/science/article/pii/S0957417423030592?casa_token=REanpK9sxngAAAAA:Oc8d7Xf8AgNEcFd2KrH4DdRD_J2s0MK-06cHMgPVJ_Taw4JtioqbwYQd1xX1Xco4gw3em0P7gBsY [Google Scholar]
  15. O.T. Arogundade, C. Atasie, S. Misra, A.B. Sakpere, O.O. Abayomi-Alli, K.A. Adesemowo, Improved predictive system for soil test fertility performance using fuzzy rule approach, in Soft Computing and its Engineering Applications: Second International Conference, icSoftComp 2020, Changa, Anand, India, December 11-12, 2020, Proceedings 2 (Springer Singapore, 2021), pp. 249–263. https://link.springer.com/chapter/10.1007/978-981-16-0708-0_21 [Google Scholar]
  16. S.S.D.R. Tetala, Artificial intelligence powered personalized agriculture, Ph.D. thesis, Colorado State University (2023). https://search.proquest.com/openview/ef77c2f651e02a4cc3b869dd93451fcf/1?pqorigsite=gscholar&cbl=18750&diss=y [Google Scholar]
  17. C. Musanase, A. Vodacek, D. Hanyurwimfura, A. Uwitonze, I. Kabandana, Data-driven analysis and machine learning-based crop and fertilizer recommendation system for revolutionizing farming practices. Agriculture 13(11), 2141 (2023). https://www.mdpi.com/2077-0472/13/11/2141 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.