Open Access
Issue |
SHS Web Conf.
Volume 216, 2025
International Conference on the Impact of Artificial Intelligence on Traditional Economic Sectors (ICIAITES 2025)
|
|
---|---|---|
Article Number | 01070 | |
Number of page(s) | 11 | |
Section | Intelligent Systems and Digital Transformation in Agricultural Economy and Sustainable Development | |
DOI | https://doi.org/10.1051/shsconf/202521601070 | |
Published online | 23 May 2025 |
- C. Pylianidis, S. Osinga, I.N. Athanasiadis, Introducing digital twins to agriculture. Comput. Electron. Agric. 184, 105942 (2021). https://doi.org/10.1016/j.compag.2021.105942 [CrossRef] [Google Scholar]
- O. Das, M.H. Zafar, F. Sanfilippo, S. Rudra, M.L. Kolhe, Advancements in digital twin technology and machine learning for energy systems: A comprehensive review of applications in smart grids, renewable energy, and electric vehicle optimisation. Energy Convers. Manag. X, 100715 (2024). https://doi.org/10.1016/j.ecmx.2024.100715 [Google Scholar]
- J.H. Jeong, J.P. Resop, N.D. Mueller, D.H. Fleisher, K. Yun, E.E. Butler, S.H. Kim, Random forests for global and regional crop yield predictions. PLoS ONE 11(6), e0156571 (2016). https://doi.org/10.1371/journal.pone.0156571 [CrossRef] [Google Scholar]
- A. Nasirahmadi, O. Hensel, Toward the next generation of digitalization in agriculture based on digital twin paradigm. Sensors 22(2), 498 (2022). https://doi.org/10.3390/s22020498 [CrossRef] [Google Scholar]
- K.G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine learning in agriculture: A review. Sensors 18(8), 2674 (2018). https://doi.org/10.3390/s18082674 [CrossRef] [Google Scholar]
- M.M. Jaber, M.H. Ali, S.K. Abd, M.M. Jassim, A. Alkhayyat, H.W. Aziz, A.R. Alkhuwaylidee, Predicting climate factors based on big data analytics based agricultural disaster management. Phys. Chem. Earth Parts A/B/C 128, 103243 (2022). https://doi.org/10.1016/j.pce.2022.103243 [CrossRef] [Google Scholar]
- S. Cesco, P. Sambo, M. Borin, B. Basso, G. Orzes, F. Mazzetto, Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 146, 126809 (2023). https://doi.org/10.1016/j.eja.2023.126809 [CrossRef] [Google Scholar]
- N.N. Nitin, R.S. Srikar, P. Dileep, D.D. Hema, Maximizing Crop Yield: Crop Yield Prediction using Advanced ML Algorithms, in Proceedings of the 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), May (2024), pp. 1–6 [Google Scholar]
- K.O. Rauff, R. Bello, A review of crop growth simulation models as tools for agricultural meteorology. Agric. Sci. 6(9), 1098–1105 (2015). https://doi.org/10.4236/as.2015.69105 [Google Scholar]
- S. Gallego-García, D. Gallego-García, M. García-García, Sustainability in the agri-food supply chain: a combined digital twin and simulation approach for farmers. Procedia Comput. Sci. 217, 1280–1295 (2023). https://doi.org/10.1016/j.procs.2022.12.399 [CrossRef] [Google Scholar]
- P. Kurukulasuriya, S. Rosenthal, Climate change and agriculture: A review of impacts and adaptations (2013) [Google Scholar]
- W.N. Adger, S. Dessai, M. Goulden, M. Hulme, I. Lorenzoni, D.R. Nelson, A. Wreford, Are there social limits to adaptation to climate change?. Clim. Change 93, 335–354 (2009). https://doi.org/10.1007/s10584-008-9520-z [CrossRef] [Google Scholar]
- L.A. Ogallo, M.S. Boulahya, T. Keane, Applications of seasonal to interannual climate prediction in agricultural planning and operations. Agric. For. Meteorol. 103(1-2), 159–166 (2000). https://doi.org/10.1016/S0168-1923(00)00109-X [CrossRef] [Google Scholar]
- M.V. Sivakumar, Climate prediction and agriculture: current status and future challenges. Clim. Res. 33(1), 3–17 (2006). https://doi.org/10.3354/cr033003 [CrossRef] [Google Scholar]
- W. Purcell, T. Neubauer, Digital Twins in Agriculture: A State-of-the-art review. Smart Agric. Technol. 3, 100094 (2023). https://doi.org/10.1016/j.atech.2022.100094 [CrossRef] [Google Scholar]
- V. Patel, et al., Integrating Real-Time Data into Digital Twin Models for Improved Agricultural Forecasting. Agric. Syst. 192, 99–112 (2023) [Google Scholar]
- Y. Everingham, J. Sexton, D. Skocaj, G. Inman-Bamber, Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 36, 1–9 (2016). https://doi.org/10.1007/s13593-016-0364-z [CrossRef] [Google Scholar]
- A. Escamilla-García, G.M. Soto-Zarazúa, M. Toledano-Ayala, E. Rivas-Araiza, A. Gastélum-Barrios, Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Appl. Sci. 10(11), 3835 (2020). https://doi.org/10.3390/app10113835 [Google Scholar]
- W. Purcell, T. Neubauer, K. Mallinger, Digital Twins in agriculture: challenges and opportunities for environmental sustainability. Curr. Opin. Environ. Sustain. 61, 101252 (2023). https://doi.org/10.1016/j.cosust.2022.101252 [CrossRef] [Google Scholar]
- A. Nasirahmadi, O. Hensel, Toward the next generation of digitalization in agriculture based on digital twin paradigm. Sensors 22(2), 498 (2022). https://doi.org/10.3390/s22020498 [CrossRef] [Google Scholar]
- E.K. Ruby, G. Amirthayogam, G. Sasi, T. Chitra, A. Choubey, S. Gopalakrishnan, Advanced Image Processing Techniques for Automated Detection of Healthy and Infected Leaves in Agricultural Systems. Mesopotamian J. Comput. Sci. 2024, 62–70 (2024). https://doi.org/10.55175/cs.v1i1.444 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.