Open Access
Issue |
SHS Web Conf.
Volume 217, 2025
1st UNSIQ International Symposium on Economics and Business “SMEs’ Competitive Advantage: Digital Technology and Internationalization” (UISEB 2024)
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 12 | |
Section | Technology Integration and SME Competitiveness | |
DOI | https://doi.org/10.1051/shsconf/202521705006 | |
Published online | 26 May 2025 |
- K. Letheren, R. Russell-Bennett, and L. Whittaker, “Black, white or grey magic? Our future with artificial intelligence,” J. Mark. Manag., vol. 36, no. 3–4, pp. 216–232, Feb. 2020, doi: 10.1080/0267257X.2019.1706306. [CrossRef] [Google Scholar]
- C. Cath, S. Wachter, B. Mittelstadt, M. Taddeo, and L. Floridi, “Artificial Intelligence and the ‘Good Society’: the US, EU, and UK approach,” Sci. Eng. Ethics, Mar. 2017, doi: 10.1007/s11948-017-9901-7. [Google Scholar]
- J. Wirtz et al., “Brave new world: service robots in the frontline,” J. Serv. Manag., vol. 29, no. 5, pp. 907–931, Nov. 2018, doi: 10.1108/JOSM-04-2018-0119. [CrossRef] [Google Scholar]
- A. Przegalinska, L. Ciechanowski, A. Stroz, P. Gloor, and G. Mazurek, “In bot we trust: A new methodology of chatbot performance measures,” Bus. Horiz., vol. 62, no. 6, pp. 785–797, Nov. 2019, doi: 10.1016/j.bushor.2019.08.005. [CrossRef] [Google Scholar]
- S. Alimamy and M. A. Kuhail, “I will be with you Alexa! The impact of intelligent virtual assistant’s authenticity and personalization on user reusage intentions,” Comput. Human Behav., vol. 143, p. 107711, Jun. 2023, doi: 10.1016/j.chb.2023.107711. [CrossRef] [Google Scholar]
- S. Z. Mustafa, A. K. Kar, and M. F. W. H. A. Janssen, “Understanding the impact of digital service failure on users: Integrating Tan’s failure and DeLone and McLean’s success model,” Int. J. Inf. Manage., vol. 53, p. 102119, Aug. 2020, doi: 10.1016/j.ijinfomgt.2020.102119. [Google Scholar]
- Y.-S. (Sandy) Huang and P. Dootson, “Chatbots and service failure: When does it lead to customer aggression,” J. Retail. Consum. Serv., vol. 68, p. 103044, Sep. 2022, doi: 10.1016/j.jretconser.2022.103044. [CrossRef] [Google Scholar]
- J. Marous, “Greater Acceptance of AI Translates to Lower Satisfaction Levels,” Financial Brand. [Online]. Available: https://thefinancialbrand.com/news/dataanalytics-banking/artificial-intelligence-banking/banking-artificial-intelligence-aiexperience-covid-trends-98583/ [Google Scholar]
- J. Balakrishnan, S. S. Abed, and P. Jones, “The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services?,” Technol. Forecast. Soc. Change, vol. 180, p. 121692, Jul. 2022, doi: 10.1016/j.techfore.2022.121692. [CrossRef] [Google Scholar]
- R. E. Bawack, “How Perceived Intelligence Affects Consumer Adoption of AIBased Voice Assistants: An Affordance Perspective,” in PACIS, 2021, p. 178. [Google Scholar]
- C.-L. Hsu and J. C.-C. Lin, “Understanding the user satisfaction and loyalty of customer service chatbots,” J. Retail. Consum. Serv., vol. 71, p. 103211, Mar. 2023, doi: 10.1016/j.jretconser.2022.103211. [CrossRef] [Google Scholar]
- M. Chung, E. Ko, H. Joung, and S. J. Kim, “Chatbot e-service and customer satisfaction regarding luxury brands,” J. Bus. Res., vol. 117, pp. 587–595, Sep. 2020, doi: 10.1016/j.jbusres.2018.10.004. [CrossRef] [Google Scholar]
- A. Khadija, F. F. Zahra, and A. Naceur, “AI-Powered Health Chatbots: Toward a general architecture,” Procedia Comput. Sci., vol. 191, pp. 355–360, 2021, doi: 10.1016/j.procs.2021.07.048. [CrossRef] [Google Scholar]
- J. Munnukka, K. Talvitie-Lamberg, and D. Maity, “Anthropomorphism and social presence in Human–Virtual service assistant interactions: The role of dialog length and attitudes,” Comput. Human Behav., vol. 135, p. 107343, Oct. 2022, doi: 10.1016/j.chb.2022.107343. [CrossRef] [Google Scholar]
- E. Adamopoulou and L. Moussiades, “Chatbots: History, technology, and applications,” Mach. Learn. with Appl., vol. 2, p. 100006, Dec. 2020, doi: 10.1016/j.mlwa.2020.100006. [CrossRef] [Google Scholar]
- D. Menon and K. Shilpa, “‘Chatting with ChatGPT’: Analyzing the factors influencing users’ intention to Use the Open AI’s ChatGPT using the UTAUT model,” Heliyon, vol. 9, no. 11, p. e20962, Nov. 2023, doi: 10.1016/j.heliyon.2023.e20962. [CrossRef] [Google Scholar]
- S. Clark, “5 ways chatbots improve employee experience. Reworked.” Accessed: Feb. 22, 2024. [Online]. Available: https://www.reworked.co/employee-experience/5-ways-chatbots-improve-employee-experience/ [Google Scholar]
- R. Williams, “Study: chatbots to drive $112B in retail sales by 2023,” Marketing Dive. Accessed: Mar. 01, 2024. [Online]. Available: https://www.marketingdive.com/news/study-chatbots-to-drive-112b-in-retail-sales-by-2023/554416/ [Google Scholar]
- S. Suthar, “Top 10 AI-powered chatbots to skyrocket your sales,” The Next Scoop. [Online]. Available: https://thenextscoop.com/ai-powered-chatbots-to-skyrocketsales/ [Google Scholar]
- B. Mauze, C. Venkatesan, A. Chandrashekar, and C. Agarwal, “Voice assistants–the new glass,” 2018. [Google Scholar]
- E. Devaney, “The 2018 state of chatbots report: How chatbots are reshaping online experiences.” [Google Scholar]
- P. Srinivasan, K., Nguyen, C., & Tanguturi, “Chatbots are here to stay,” 2018. [Google Scholar]
- T. Chong, T. Yu, D. I. Keeling, and K. de Ruyter, “AI-chatbots on the services frontline addressing the challenges and opportunities of agency,” J. Retail. Consum. Serv., vol. 63, p. 102735, Nov. 2021, doi: 10.1016/j.jretconser.2021.102735. [CrossRef] [Google Scholar]
- T. W. Liew and S.-M. Tan, “Social cues and implications for designing expert and competent artificial agents: A systematic review,” Telemat. Informatics, vol. 65, p. 101721, Dec. 2021, doi: 10.1016/j.tele.2021.101721. [CrossRef] [Google Scholar]
- S. Moussawi, M. Koufaris, and R. Benbunan-Fich, “How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents,” Electron. Mark., vol. 31, no. 2, pp. 343–364, Jun. 2021, doi: 10.1007/s12525-020-00411-w. [CrossRef] [Google Scholar]
- C. Bartneck, D. Kulić, E. Croft, and S. Zoghbi, “Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots,” Int. J. Soc. Robot., vol. 1, no. 1, pp. 71–81, Jan. 2009, doi: 10.1007/s12369-008-0001-3. [CrossRef] [Google Scholar]
- Q. Zhang, J. Lu, and Y. Jin, “Artificial intelligence in recommender systems,” Complex Intell. Syst., vol. 7, no. 1, pp. 439–457, Feb. 2021, doi: 10.1007/s40747020-00212-w. [CrossRef] [Google Scholar]
- S.-M. Tan and T. W. Liew, “Designing Embodied Virtual Agents as Product Specialists in a Multi-Product Category E-Commerce: The Roles of Source Credibility and Social Presence,” Int. J. Human–Computer Interact., vol. 36, no. 12, pp. 1136–1149, Jul. 2020, doi: 10.1080/10447318.2020.1722399. [CrossRef] [Google Scholar]
- J. Balakrishnan and Y. K. Dwivedi, “Role of cognitive absorption in building user trust and experience,” Psychol. Mark., vol. 38, no. 4, pp. 643–668, Apr. 2021, doi: 10.1002/mar.21462. [CrossRef] [Google Scholar]
- H. A. Farahdibaj, “PENGARUH CUSTOMER PERCEIVED VALUE, PERCEIVED EASE OF USE, KEPUASAN DAN KEPUASAN TERHADAP LOYALITAS NASABAH MOBILE BANKING BANK SYARIAH INDONESIA,” El-Aswaq, vol. 4, no. 02, Jul. 2023, doi: 10.31106/laswq.v4i02.25794. [CrossRef] [Google Scholar]
- A. R. Zakariya and N. L. B. Puspita, “THE INFLUENCE OF DIGITAL LITERACY, ZAKAT AWARENESS AND SERVICE QUALITY ON MUZAKKI’S DECISION TO PAY ZAKAT VIA TOKOPEDIA E-COMMERCE,” El-Aswaq, vol. 5, no. 1, Aug. 2024, doi: 10.31106/laswq.v5i01.25797. [CrossRef] [Google Scholar]
- M. Ashfaq, J. Yun, S. Yu, and S. M. C. Loureiro, “I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents,” Telemat. Informatics, vol. 54, p. 101473, Nov. 2020, doi: 10.1016/j.tele.2020.101473. [CrossRef] [Google Scholar]
- A. Bhattacherjee, “Understanding Information Systems Continuance: An Expectation-Confirmation Model,” MIS Q., vol. 25, no. 3, p. 351, Sep. 2001, doi: 10.2307/3250921. [CrossRef] [Google Scholar]
- T. S. Ramadhan and A. B. Krisnanto, “Would you be willing to pay more if AI robot waiters were introduced? The pivotal role of the need for uniqueness and perceived uniqueness,” JEMA J. Ilm. Bid. Akunt. dan Manaj., vol. 21, no. 1, pp. 172–198, Apr. 2024, doi: 10.31106/jema.v21i1.21796. [Google Scholar]
- K. Khuzaini and Z. Zamrudi, “Technostress among marketing employee during the COVID-19 pandemic: Exploring the role of technology usability and presenteeism,” JEMA J. Ilm. Bid. Akunt. dan Manaj., vol. 18, no. 1, p. 36, Apr. 2021, doi: 10.31106/jema.v18i1.10050. [Google Scholar]
- M. Jang, Y. Jung, and S. Kim, “Investigating managers’ understanding of chatbots in the Korean financial industry,” Comput. Human Behav., vol. 120, p. 106747, Jul. 2021, doi: 10.1016/j.chb.2021.106747. [CrossRef] [Google Scholar]
- Y. Cheng and H. Jiang, “How Do AI-driven Chatbots Impact User Experience? Examining Gratifications, Perceived Privacy Risk, Satisfaction, Loyalty, and Continued Use,” J. Broadcast. Electron. Media, vol. 64, no. 4, pp. 592–614, Oct. 2020, doi: 10.1080/08838151.2020.1834296. [CrossRef] [Google Scholar]
- M. Nguyen, L. Casper Ferm, S. Quach, N. Pontes, and P. Thaichon, “Chatbots in frontline services and customer experience: An anthropomorphism perspective,” Psychol. Mark., vol. 40, no. 11, pp. 2201–2225, Nov. 2023, doi: 10.1002/mar.21882. [CrossRef] [Google Scholar]
- W.-L. Shiau and M. M. Luo, “Factors affecting online group buying intention and satisfaction: A social exchange theory perspective,” Comput. Human Behav., vol. 28, no. 6, pp. 2431–2444, Nov. 2012, doi: 10.1016/j.chb.2012.07.030. [CrossRef] [Google Scholar]
- A. B. Primanto and M. S. Amin, “From human to robot: A comparative analysis of agent bot anthropomorphic perceptions between Gen Y and Gen Z,” J. Ekon. Mod., vol. 20, no. 1, pp. 1–18, 2024, doi: https://doi.org/10.21067/jem.v20i1.10289. [Google Scholar]
- R. Bawack and K. Desveaud, “Consumer adoption of artificial intelligence: A review of theories and antecedents.,” in Proceedings of the 55th Hawaii International Conference on System Sciences, 2022. [Google Scholar]
- D. Marikyan, S. Papagiannidis, O. F. Rana, R. Ranjan, and G. Morgan, “‘Alexa, let’s talk about my productivity’: The impact of digital assistants on work productivity,” J. Bus. Res., vol. 142, pp. 572–584, Mar. 2022, doi: 10.1016/j.jbusres.2022.01.015. [CrossRef] [Google Scholar]
- D. King and R. Devasagayam, “An endowment, commodity, and prospect theory perspective on consumer hoarding behavior,” J. Bus. Theory Pract., vol. 5, no. 2, p. 77, Apr. 2017, doi: 10.22158/jbtp.v5n2p77. [CrossRef] [Google Scholar]
- K. J. Preacher and A. F. Hayes, “Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models,” Behav. Res. Methods, vol. 40, no. 3, pp. 879–891, Aug. 2008, doi: 10.3758/BRM.40.3.879. [CrossRef] [Google Scholar]
- A. B. Primanto and B. S. Dharmmesta, “What happens after they laugh: How humorous advertisements have an effect on consumers’attitudes, word of mouth intentions, and purchase intentions, with the need for humor playing a moderating role,” J. Indones. Econ. Bus., vol. 34, no. 2, p. 117, Dec. 2019, doi: 10.22146/jieb.23036. [CrossRef] [Google Scholar]
- A. F. Hayes, A. K. Montoya, and N. J. Rockwood, “The analysis of mechanisms and their contingencies: PROCESS versus structural equation modeling,” Australas. Mark. J., vol. 25, no. 1, pp. 76–81, Feb. 2017, doi: 10.1016/j.ausmj.2017.02.001. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.