Open Access
Issue |
SHS Web Conf.
Volume 218, 2025
2025 2nd International Conference on Development of Digital Economy (ICDDE 2025)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 9 | |
Section | Digital Finance: Innovation, Regulation, and Inclusion | |
DOI | https://doi.org/10.1051/shsconf/202521801025 | |
Published online | 03 July 2025 |
- V. Bolón-Canedo, L. Morán-Fernández, B. Cancela, et al., A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing, 128096 (2024) [Google Scholar]
- S. Moveh, E. A. Merchán-Cruz, A. O. Ibrahim, et al., Thermodynamic Optimization of Building HVAC Systems Through Dynamic Modeling and Advanced Machine Learning. Sustainability, 17(5), 1955 (2025) [CrossRef] [Google Scholar]
- X. Bi, D. Chen, G, Chen, et al., Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint arXiv:2401.02954 (2024) [Google Scholar]
- K. Deb, A. Pratap, S. Agarwal, et al., A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 6(2), 182-197 (2002) [CrossRef] [Google Scholar]
- A. Younesi, M. Ansari, A. Ejlali, et al., GAP: Game Theory-Based Approach for Reliability and Power Management in Emerging Fog Computing. arXiv preprint arXiv:2412.11310 (2024) [Google Scholar]
- T. Hazra, K. Anjaria, Applications of game theory in deep learning: a survey. Multimed Tools Appl, 81(6), 8963-8994 (2022) [CrossRef] [Google Scholar]
- W. Dai, Z. Jia, Y. Bai, et al., Convergence-aware operator-wise mixed-precision training. CCF Trans High Perform Comput, 7(1), 43-57 (2025) [CrossRef] [Google Scholar]
- D. Dai, C. Deng, C. Zhao, et al., Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models. arXiv preprint arXiv:2401.06066 (2024) [Google Scholar]
- P. Liang, J. Chen, Y. Wu, et al., Data-free knowledge distillation with feature synthesis and spatial consistency for image analysis. Sci Rep, 14(1), 27557 (2024) [CrossRef] [Google Scholar]
- W. König, S. Löbbe, S. Büttner, et al., Establishing energy efficiency-drivers for energy efficiency in German manufacturing small and medium-sized enterprises. Energies, 13(19), 5144 (2020) [CrossRef] [Google Scholar]
- M. A. Craciun, Behavioral Economics and Technology Innovation: Using Choice Architecture to Build and Scale Products. In Proc Int Conf Bus Excell, 17(1), 904-913 (2023). [Google Scholar]
- P. Tominc, D. Oreški, V. Čančer, et al., Statistically significant differences in AI support levels for project management between SMEs and large enterprises. AI, 5(1), 136-157 (2024) [CrossRef] [Google Scholar]
- A. Halsband, Sustainable AI and intergenerational justice. Sustainability, 14(7), 3922 (2022) [CrossRef] [Google Scholar]
- X. Yang, Z. Zhang, H. Chen, et al., Assessing the carbon emission driven by the consumption of carbohydrate-rich foods: The case of China. Sustainability, 11(7), 1875 (2019) [CrossRef] [Google Scholar]
- D. S. Watson, L. Gultchin, A. Taly, et al., Local explanations via necessity and sufficiency: Unifying theory and practice. Uncertainty in Artificial Intelligence, 1382-1392 (2021) [Google Scholar]
- T. Luo, W. F. Wong, R. S. M. Goh, et al., Achieving green ai with energy-efficient deep learning using neuromorphic computing. Commun ACM, 66(7), 52-57 (2023) [CrossRef] [Google Scholar]
- A. Pal, Z. Chai, J. Jiang, et al., An ultra energy-efficient hardware platform for neuromorphic computing enabled by 2D-TMD tunnel-FETs. Nat Commun, 15(1), 3392 (2024) [CrossRef] [Google Scholar]
- A. Ajagekar, F. You, Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality. Renew Sustain Energy Rev, 165, 112493 (2022) [CrossRef] [Google Scholar]
- J. I. Okonkwo, M. S. Abdelfattah, P. Mirtaheri, et al., Energy-aware bio-inspired spiking reinforcement learning system architecture for real-time autonomous edge applications. Front in Neurosci, 18, 1431222 (2024) [CrossRef] [Google Scholar]
- M. Vandersteegen, K. Van Beeck, T. Goedemé, Integer-only cnns with 4-bit weights and bit-shift quantization scales at full-precision accuracy. Electronics, 10(22), 2823 (2021) [CrossRef] [Google Scholar]
- L. Liu, Z. Zheng, C. Wang, et al., Binary Neural Networks for Large Language Model: A Survey. arXiv preprint arXiv:2502.19008 (2025) [Google Scholar]
- I. Kulkov, J. Kulkova, R. Rohrbeck, et al., Artificial intelligence‐driven sustainable development: Examining organizational, technical, and processing approaches to achieving global goals. Sustain Dev, 32(3), 2253-2267 (2024) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.