Open Access
Issue |
SHS Web Conf.
Volume 218, 2025
2025 2nd International Conference on Development of Digital Economy (ICDDE 2025)
|
|
---|---|---|
Article Number | 02025 | |
Number of page(s) | 7 | |
Section | Finance Tech Advances: Impacts and Innovations | |
DOI | https://doi.org/10.1051/shsconf/202521802025 | |
Published online | 03 July 2025 |
- M. Qureshi, H. Iftikhar, P. C. Rodrigues, M. Z. Rehman, S. A. A. Salar, Statistical Modeling to Improve Time Series Forecasting Using Machine Learning, Time Series, and Hybrid Models: A Case Study of Bitcoin Price Forecasting. Mathematics 12 (23), 3666 (2024) [CrossRef] [Google Scholar]
- P. Sudhakarana, V. Sharma, S. Khandelwa, BiBitcoin Price Prediction using Recurrent Neural Networks and Long Short-Term Memory. E3S Web of Conferences 491, 03001 (2024) [CrossRef] [EDP Sciences] [Google Scholar]
- R. S. T. Lee, Quantum finance: intelligent forecast and trading systems (Springer, Singapore, 2020) [CrossRef] [Google Scholar]
- X. He, Y. Li, H. Li, Revolutionizing Bitcoin price forecasts: A comparative study of advanced hybrid deep learning architectures, Finance Research Letters, 69,106136, 2024 [CrossRef] [Google Scholar]
- S. Erfanian et al., “Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach,” Neural Comput. Appl., 33(3)1295–1312(2021) [Google Scholar]
- I. E. Livieris et al., “Review of deep learning models for crypto price prediction: implementation and evaluation,” arXiv preprint arXiv:2405.11431(2024) [Google Scholar]
- F. U. Khan, F. Khan, P. A. Shaikh, Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms. Future Business Journal 9, 25 (2023) [CrossRef] [Google Scholar]
- P. Boozary, S. Sheykhan, H. GhorbanTanhaei, Forecasting the Bitcoin price using the various Machine Learning: A systematic review in data-driven marketing. Systems and Soft Computing, 200209 (2025) [Google Scholar]
- H. Tayib, A. M. Abdulazeez, A Review of Bitcoin Price Prediction Based on Deep Learning Algorithms. The Indonesian Journal of Computer Science 13 (2), (2024) [CrossRef] [Google Scholar]
- J. M. Carbó, S. Gorjón, Determinants of the price of bitcoin: An analysis with machine learning and interpretability techniques. International Review of Economics & Finance 92, 123–140 (2024) [CrossRef] [Google Scholar]
- A. H. A. Othman, S. Kassim, R. B. Rosman, N. H. B. Redzuan, Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach. Journal of Revenue and Pricing Management, (2020) [Google Scholar]
- M. Liu, G. Li, J. Li, X. Zhu, Y. Yao, Forecasting the price of Bitcoin using deep learning. Finance Research Letters, 101755 (2020) [Google Scholar]
- S. Lahmiri and S. Bekiros, Cryptocurrency forecasting with deep learning chaotic neural networks, Chaos, Solitons & Fractals, 118, 35–40(2019) [CrossRef] [Google Scholar]
- S. Shahi, F. H. Fenton, E. M. Cherry, Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study. Machine Learning with Applications 8, 100300 (2022) [CrossRef] [Google Scholar]
- D. Emmanoulopoulos, S. Dimoska, Quantum Machine Learning in Finance: Time Series Forecasting 20 (2022) 8-3, Quantum Physics (quant-ph) [Google Scholar]
- W. Wei et al., Bitcoin Transaction Forecasting with Deep Network Representation Learning, arXiv preprint arXiv:2007.07993, 2020 [Google Scholar]
- S. Ji, J. Kim, H. Im, A Comparative Study of Bitcoin Price Prediction Using Deep Learning, Mathematics, 7(10) , 898(2019) [CrossRef] [Google Scholar]
- S. Erfanian et al., Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach, Neural Comput. Appl., 33(3)1295–1312(2021) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.