Open Access
Issue
SHS Web of Conferences
Volume 23, 2016
PSU-USM-NSTRU 2014 International Conference on Arts and Sciences 2014 “Arts and Sciences Research 2014: Spot of Change for Tomorrow”
Article Number 03001
Number of page(s) 19
Section Natural Science and Technology
DOI https://doi.org/10.1051/shsconf/20162303001
Published online 06 January 2016
  1. Abdul Rahman, S, B. (2000), population and housing census of Malaysia, population distribution by local author areas and mukims, pp 1–367. [Google Scholar]
  2. Agus, M. R., Doling, J., & Lee, D. S. (2002). Housing policy systems in south and east Asia: Palgrave Macmillan New York. [CrossRef] [Google Scholar]
  3. Biotto, G., Silvestri, S., Gobbo, L., Furlan, E., Valenti, S., & Rosselli, R. (2009). GIS, multi‐criteria and multi‐factor spatial analysis for the probability assessment of the existence of illegal landfills. International Journal of Geographical Information Science, 23(10), 1233–1244. [CrossRef] [Google Scholar]
  4. Bukhari, Zubaidah (2010) Integration of Geographical Information System and Multi Criteria Evaluation for Identification of Suitable Urban School Sites. Masters thesis, Universiti Putra Malaysia. [Google Scholar]
  5. Carver, S. (1996). Wilderness Britain: Using GIS and multi-criteria evaluation techniques to map the wilderness continuum: School of Geography, University of Leeds. [Google Scholar]
  6. Chadchan, J., Shankar, R. (2012) An analysis of urban growth trends in the post-economic reforms period in India, International Journal of Sustainable Built Environment, 1, 36–49. [CrossRef] [Google Scholar]
  7. Chan, N. W. (2010). Impacts of human habitat development on the environment–challenges and the way forward. Malaysian Journal of Environmental Management, 11(2), 3–20. [Google Scholar]
  8. Chen, K., Blong, R., & Jacobson, C. (2001). MCE-RISK: integrating multicriteria evaluation and GIS for risk decision-making in natural hazards. Environmental Modelling & Software, 16(4), 387–397. [CrossRef] [Google Scholar]
  9. Chen, J. (2014). GIS-based multi-criteria analysis for land use suitability assessment in City of Regina. Environmental Systems Research 2014, 3:13. [CrossRef] [Google Scholar]
  10. Chuvieco, E. (1993). Integration of linear programming and GIS for land-use modelling. International Journal of Geographical Information Science, 7(1), 71–83. [CrossRef] [Google Scholar]
  11. Cromley, R. G., & Huffman, F. T. (2006). Modeling situation factors used in MCE procedures for raster GIS. Transactions in GIS, 10(2), 239–251. [CrossRef] [Google Scholar]
  12. Drobne, S., & Lisec, A. (2009). Multi-attribute decision analysis in GIS: weighted linear combination and ordered weighted averaging. Informatica: An International Journal of Computing and Informatics, 33(4), 459–474. [Google Scholar]
  13. Elhadary, Y., & Saman, N. (2015) Integrating Geographic Information System and Discriminant Analysis in Modelling Urban Spatial Growth: An Example from Seberang Perai Region, Penang State, Malaysia. Asian Social Science ; Vol. 11, No. 2; 2015. [Google Scholar]
  14. Elhadary, Y., Narimah, S & Obeng-Odoom, Franklin (2013) Development at the Peri-Urban Area and Its Impact on Agricultural Activities: An Example from the Seberang Perai Region, Penang State, Malaysia, Agroecology and Sustainable Food Systems, 37:7, 834–856 [Google Scholar]
  15. Fischer, M. M., & Nijkamp, P. (1993). Geographic information systems, spatial modelling and policy evaluation, in Geographic information systems, spatial modelling and policy evaluation. (1st ed.). [CrossRef] [Google Scholar]
  16. Fekade, W. (2000). Deficits of formal urban land management and informal responses under rapid urban growth, an international perspective. Habitat International, 24(2), 127–150. [CrossRef] [Google Scholar]
  17. Hepinstall, J. A., Alberti, M., & Marzluff, J. M. (2008). Predicting land cover change and avian community responses in rapidly urbanizing environments. Landscape ecology, 23(10), 1257–1276. [CrossRef] [Google Scholar]
  18. Jankowski, P. (1995). Integrating geographical information systems and multiple criteria decision-making methods. International Journal of Geographical Information Systems, 9(3), 251–273. [CrossRef] [Google Scholar]
  19. Jat, M. K., Garg, P., & Khare, D. (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 10(1), 26–43. [CrossRef] [Google Scholar]
  20. Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173–184. [CrossRef] [Google Scholar]
  21. Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual review of environment and resources, 28(1), 205–241. [CrossRef] [Google Scholar]
  22. LaGro, J. A., & DeGloria, S. D. (1992). Land use dynamics within an urbanizing non-metropolitan county in New York State (USA). Landscape ecology, 7(4), 275–289. [CrossRef] [Google Scholar]
  23. López-Marrero, T., & Yarnal, B. (2010). Putting adaptive capacity into the context of people’s lives: a case study of two flood-prone communities in Puerto Rico. Natural Hazards, 52(2), 277–297. [CrossRef] [Google Scholar]
  24. Ma, Y., & Xu, R. (2010). Remote sensing monitoring and driving force analysis of urban expansion in Guangzhou City, China. Habitat International, 34(2), 228–235. [CrossRef] [Google Scholar]
  25. Malczewski, J. (2004). GIS-based land-use suitability analysis: a critical overview. Progress in Planning, 62(1), 3–65. [CrossRef] [Google Scholar]
  26. Malczewski, J. (2002). Fuzzy screening for land suitability analysis. Geographical and Environmental Modelling, 6(1), 27–39. [CrossRef] [Google Scholar]
  27. Malczewski, J. (1999). GIS and multicriteria decision analysis, Canada, John Wiley & Sons. [Google Scholar]
  28. Malczewski, J. (1996). A GIS-based approach to multiple criteria group decision-making. International Journal of Geographical Information Systems, 10(8), 955–971. [CrossRef] [Google Scholar]
  29. Moeinaddini, M., Khorasani, N., Danehkar, A., & Darvishsefat, A. A. (2010). Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste Management, 30(5), 912–920. [CrossRef] [PubMed] [Google Scholar]
  30. Openshaw, S. (1996). Developing GIS-relevant zone-based spatial analysis methods. Spatial analysis: modelling in a GIS environment, 55–73. [Google Scholar]
  31. Pourebrahim, S., Hadipour, M., & Bin Mokhtar, M. (2011). Integration of spatial suitability analysis for land use planning in coastal areas; case of Kuala Langat District, Selangor, Malaysia. Landscape and Urban Planning, 101(1), 84–97. [CrossRef] [Google Scholar]
  32. Raddad, S., Salleh, A., Samat, N. (2010). Determinants of agricultural land use change in Palestinian urban environment :Urban planners at local governments perspective, American – Eurasian Journal of sustainable agricultural, 4, 30–38. [Google Scholar]
  33. Rainis, R, Ismail, W, Shariff, N. Estimating sediment yield of a small catchment in a tropical region using the AGNPS model: the Waterfall River catchment, Penang, Malaysia. Journal of Environmental Hydrology. 2002;10:1–10. [Google Scholar]
  34. Reshmidevi, T., Eldho, T., & Jana, R. (2009). A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agricultural Systems, 101(1-2), 101–109. [CrossRef] [Google Scholar]
  35. Saaty, T. L. (1987). Rank generation, preservation, and reversal in the analytic hierarchy decision process. Decision sciences, 18(2), 157–177. [CrossRef] [Google Scholar]
  36. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234–281. [CrossRef] [Google Scholar]
  37. Samat, N. (2010). Assessing land use land cover changes in Langkawi island: towards sustainable urban living. Malaysian Journal of Environmental Management, 11(1), 48–57. [Google Scholar]
  38. Samat, N. (2006). Characterizing the scale sensitivity of the cellular automata simulated urban growth: A case study of the seberangperai region, Penang State, Malaysia. Computers, Environment and Urban Systems, 30(6), 905–920. [CrossRef] [Google Scholar]
  39. Samat, N. (2002). A geographic information system and cellular automata spatial model of urban development for Penang State, Malaysia. Phd. Thesis. University of Leeds. [Google Scholar]
  40. Sabbar, K. Elhadary, Y. and Samat, N. (2015) GIS and Remote Sensing Techniques for measuring agriculture land loss in BalikPulau Region of Penang State, Malaysia. Journal of Agriculture and Rural Development, 5(2) 2015: 30–41 [Google Scholar]
  41. Shariff, N., Gairola, S., & Talib, A. (2010). Modelling urban land use change using Geographically Weighted Regression and the implications for sustainable environmental planning. [Google Scholar]
  42. Umrikar, B. (2013) Multi Criteria approach for analysis of Land Suitability for Urban Expansion. The Journal of Geography and Geology. Photon 117 (2013) 170–176. [Google Scholar]
  43. Verburg, P. H., & Chen, Y. Q. (2000). Multiscale characterization of land-use patterns in China. Ecosystems, 3(4), 369–385. [CrossRef] [Google Scholar]
  44. Voogd, H. (1983). Multicriteria evaluation for urban and regional planning: Pion London. [Google Scholar]
  45. Weerakoon, K. (2014). Suitability Analysis for Urban Agriculture Using GIS and Multi-Criteria Evaluation. International Journal of Agricultural Science and Technology (IJAST) Volume 2 Issue 2, May 2014 [Google Scholar]
  46. Xu, H., Wang, X., & Xiao, G. (2000). A remote sensing and GIS integrated study on urbanization with its impact on arable lands: Fuqing City, Fujian Province, China. Land Degradation & Development, 11(4), 301–314. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.