Open Access
SHS Web Conf.
Volume 39, 2017
Innovative Economic Symposium 2017 (IES2017)
Article Number 01013
Number of page(s) 12
Section Strategic Partnerships in International Trade
Published online 06 December 2017
  1. E. Kirkos, Assesing methodologies for intelligent bankruptcy prediction. Art. Int. Rev., 43, 83–123 (2015) [CrossRef] [Google Scholar]
  2. Y. Zelenkov, E. Fedorova, D. Chekrizov, Two-step classification method based on genetic algorithm for bankruptcy forecasting. Exp. Sys. App., 88, 393–401 (2017) [Google Scholar]
  3. D. Liang, Ch. Tsai, H. Wu, The effect of feature selection on financial distress prediction. Know. Bas. Sys., 73, 289–297 (2015) [CrossRef] [Google Scholar]
  4. Y. Peng, G. Wang, G. Kou, Y. Shi, An empirical study of classification algorithm evaluation for financial risk prediction. App. S. Comp, 11(2), 2906–2915 (2011) [CrossRef] [Google Scholar]
  5. E. Fedorova, E. Gilenko, S. Dovzhenko, Bankruptcy prediction for Russian companies: Application of combined classifiers. Exp. Sys. App., 40(18), 7285–7293 (2013) [CrossRef] [Google Scholar]
  6. M. A. Aziz, H. A. Dar, Predicting corporate bankruptcy: Where we stand? Corp. Gov. Int. J Bus. Soc., 6, 18–33 (2006) [Google Scholar]
  7. E. I. Altman, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J Fin., 23(4), 589–609 (1968) [Google Scholar]
  8. R.O. Edmister, Financial ratios as discriminant predictors of small business failure. Journal of Finance, 27(1), 139–140 (1972) [Google Scholar]
  9. G.L.V. Springate, Predicting the possibility of failure in a Canadian firm (Unpublished master´s thesis), Simon Fraser University, Canada 42 (1978) [Google Scholar]
  10. J. A. Ohlson, Financial ratios and the probabilistic prediction of bankruptcy. J Acc. Res., 18(1), 109–131 (1980) [Google Scholar]
  11. M.E. Zmijewski, Methodological issues related to the estimation of financial distress prediction models. J. Acc. Res., 22, 59–82 (1984) [Google Scholar]
  12. A.A. Kasgari, M. Divsalar, M.R. Javid, S.J. Ebrahimian, Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neur. Com. App., 23(3-4), 927–936 (2013) [CrossRef] [Google Scholar]
  13. J.L. Bellovary, D.E. Giacomino, M.D. Akers, A review of bankruptcy prediction studies: 1930 to present. J Fin. Edu., 33, 1–42 (2007) [Google Scholar]
  14. N. Gordini, A genetic algorithm approach for SMEs bankruptcy prediction: empirical evidence from Italy. Exp Sys. App., 41(14), 6433–6445 (2014) [CrossRef] [Google Scholar]
  15. D. Santos, E. M. Sabourin, P. Maupin, Overfitting cautious selection of classifier ensembles with genetic algorithms. Inf. Fus., 10(2), 150–162 (2009) [CrossRef] [Google Scholar]
  16. M. V. Achim, C. Mare, S. N. Borlea, A statistical model of financial risk bankruptcy applied for Romanian manufacturing industry. International Conference on Emerging Markets Queries in Finance and Business, 3, 132–137 (2012) [Google Scholar]
  17. M. Onofrei, D. Lupu, The modelling of forecasting the bankruptcy risk in Romania. Ec. Com. Ec. Cyb. St. Res., 48(3), 197–215 (2014) [Google Scholar]
  18. D. Alaminos, A. DelCastillo, M. A. Fernandez, A global model for bankruptcy prediction. Pl. One, 11(11) (2016) [Google Scholar]
  19. D. Zhao, C. Y. Huang, Y. Wei, F. H. Yu, M. J. Wang, H. L. Chen, An effective computational model for bankruptcy prediction using kernel extreme learning machine approach. Com. Eco., 49(2), 325–341 (2017) [CrossRef] [Google Scholar]
  20. C.F. Tsai, Y.F. Hsu, D.C. Yen, A comparative study of classifier ensembles for bankruptcy prediction. App. S. Com., 24, 977–984 (2014) [CrossRef] [Google Scholar]
  21. N. Zieba, S.K. Tomczak, J.M. Tomczak, Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Exp. Sys. App., 58, 93–101 (2016) [Google Scholar]
  22. M. Virag, T. Nyitrai. Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model. Ac. Oec., 64(4), 419–440 (2014) [Google Scholar]
  23. I. M. Premachandra, Y. Chen, J. Watson, DEA as a tool for predicting corporate failure and success: a case of bankruptcy assessment. Om. Int. J Man. Sc., 39(6), 620–626 (2011) [CrossRef] [Google Scholar]
  24. M. M. Mousavi, J. Ouenniche, B. Xu, Performance evaluation of bankruptcy prediction models: an orientation-free super-efficiency DEA-based framework. Int. Rev. Fin. An., 42, 64–75 (2015) [CrossRef] [Google Scholar]
  25. P. DuJardin, A two-stage classification technique for bankruptcy prediction. Eur. J Op. Res. 254(1), 236–252 (2016) [CrossRef] [Google Scholar]
  26. C. Salloum, N. Azoury, Corporate governance and firms in financial distress: evidence from a Middle Eastern country. Int. J Bus. Gov. Eth., 7(1), 1–17 (2012) [CrossRef] [Google Scholar]
  27. X. Bredart, Financial distress and corporate governance: the impact of board configuration. Int. Bus. Res., 7(3), 72 (2014) [Google Scholar]
  28. M. Karas, M. Reznakova, To what degree is the accuracy of a bankruptcy prediction model affected by the environment? The case of the Baltic States and the Czech Republic. Pr. Soc. Beh. Sc., 156, 564–568 (2014) [CrossRef] [Google Scholar]
  29. V. Delas, E. Nosova, O. Yafinovych, Financial security of enterprises. Pr. Ec. Fin., 27, 248–266 (2015) [Google Scholar]
  30. M. Rowoldt, D. Starke, The role of governments in hostile takeovers – evidence from regulation, anti-takeover provisions and government interventions. Int. Rev. Law Ec., 47, 1–15 (2016) [CrossRef] [Google Scholar]
  31. M. H. Tinoco, N. Wilson, Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. Int. Rev. Fin. An., 30, 394–419 (2013) [CrossRef] [Google Scholar]
  32. T. Kliestik, J. Majerova, Selected issues of selection of significant variables in the prediction models. Financial management of firms and financial institutions: 10th international scientific conference, 537–543 (2015) [Google Scholar]
  33. V. Bartosova, P. Kral, A methodological framework of financial analysis results objectification in the Slovak Republic. European Proceedings of Social & Behavioural Sciences, 17, 189–197 (2016) [Google Scholar]
  34. M. Durica, P. Adamko, Verification of MDA bankruptcy prediction models for enterprises in Slovak Republic. 10th international scientific conference International Days of Statistics and Economics, 400–407 (2016) [Google Scholar]
  35. R. J. Taffler, M. Tseung, The audit going-concern in practice. Pr. Acc. Mag., 88, 263–269 (1984) [Google Scholar]
  36. J. G. Fulmer, J. E. Moon, T. A. Gavin, M. J. Erwin, A bankruptcy classification model for small firms. J Com. B. Len., 25–37 (1984) [Google Scholar]
  37. E. I. Altman, M. Iwanicz-Drozdowska, E.K. Laitinen, Financial distress prediction in an international context: a review and empirical analysis of Altman´s Z-score model. J Int. Fin. Man. Acc., 28(2), 131–171 (2017) [Google Scholar]
  38. P. Adamko, L. Svabova, Prediction of the risk of bankruptcy of Slovak companies. International Scientific Conference Managing and Modelling of Financial Risks, 15–20 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.