Open Access
Issue
SHS Web Conf.
Volume 62, 2019
17th International Scientific Conference “Problems of Enterprise Development: Theory and Practice” 2018
Article Number 11004
Number of page(s) 6
Section Corporate Information Systems, Electronic Services and Cognitive Technologies
DOI https://doi.org/10.1051/shsconf/20196211004
Published online 15 March 2019
  1. D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-292. DOI: 10.2307/1914185 (1979). [CrossRef] [Google Scholar]
  2. A.Yu. Chepurenko, Entrepreneurship theory: New challenges and future prospects. Foresight-Russia, 9(2), 44-57. DOI: 10.17323/1995-459x.2015.2.44.57 (2015). [CrossRef] [Google Scholar]
  3. T.D. Malyutina, Methods of decision making under different levels of uncertainty. Management of Economic Systems, 12(60). URL: https://cyberleninka.ru/article/n/metody-prinyatiya-upravlencheskih-resheniy-pri-raznyh-urovnyah-neopredelennosti (2013). [in Rus.]. [Google Scholar]
  4. K. Haegeman, E. Marinelli, F. Scapolo, A. Ricci, A. Sokolov, Quantitative and qualitative approaches in FTA: from combination to integration? Technological Forecasting and Social Change, 80(3), 386-397. DOI: 10.1016/j.techfore.2012.10.002 (2013). [CrossRef] [Google Scholar]
  5. B.H. Wixom, H.J. Watson, An empirical investigation of the factors affecting data warehousing success. MIS Quarterly: Management Information Systems, 25(1), 17-41. DOI: 10.2307/3250957 (2001). [CrossRef] [Google Scholar]
  6. N. Mikova, A. Sokolova, Global technology trends monitoring: theoretical frameworks and best practices. Foresight-Russia, 8(4), 64-83 (2014). [Google Scholar]
  7. S.P. Aukuzionek, Investment behavior of enterprises in 2015-2016. Russian Economic Barometer, 3(63), 3-10. URL: https://cyberleninka.ru/article/n/investitsionnoe-povedenie-predpriyatiy-v-2015-2016-gg (2016). [in Rus.]. [Google Scholar]
  8. T.U. Korneeva, S.A. Nikitin, Formation of strategy of development of industrial enterprises in the conditions of uncertainty. News of Tula State University. Economic and Legal Sciences, 2(2), 136-142. URL: https://cyberleninka.ru/article/n/formirovanie-strategii-razvitiya-promyshlennyh-predpriyatiy-v-usloviyah-neopredelennosti (2009). [in Rus.]. [Google Scholar]
  9. I.M. Golova, A.F. Sukhovey, Threats to the innovative security of regional development in a digital society. Economy of Region, 14(3), 987-1002. DOI: 10.17059/2018-3-21 (2018). [in Rus.]. [CrossRef] [Google Scholar]
  10. T.Y. Prasolova, M.E. Butakova, The model for design estimates documentation processing aimed at management decision-making informational support in construction projects in Russian Federation. Competitiveness in the Global World: Economics, Science, Technology, 11(6), 779-783. URL: https://docs.wixstatic.com/ugd/dcaed9_b4b26b8acc1d4050a80f4cf4515ff23c.pdf (2017). [in Rus.]. [Google Scholar]
  11. Lipatov, B.V. The new management indication: from history to innovation. Bulletin of Peoples' Friendship University of Russia. Series: Sociology, 2, 46-52. URL: https://cyberleninka.ru/article/n/novoe-izmenenie-upravleniya-ot-istorii-k-innovatsiyam (2008). [in Rus.]. [Google Scholar]
  12. D. Gorissen, I. Couckuyt, D. Demeester, T. Dhaene, K. Crombecq, A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, 2051-2055 (2010). [Google Scholar]
  13. A. Giglavy, A. Sokolov, G. Abdrakhmanova, A. Chulok, V. Burov, Long-term trends in the ICT sector. Foresight-Russia, 7(3), 6-24. DOI: 10.17323/1995-459X.2013.3.6.24 (2013). [CrossRef] [Google Scholar]
  14. S.Y. Glazyev, Anti-crisis strategy of the Russian economy development in the XXI century. Economy of Region, 2(30), 10-25. DOI: 10.17059/2012-2-1 (2012). [in Rus.]. [CrossRef] [Google Scholar]
  15. J. Calof, G. Richards, J. Smith, Foresight, competitive intelligence and business analytics – tools for making industrial programmes more efficient. Foresight-Russia, 9(1), 68-81. DOI: 10.17323/1995-459x.2015.1.68.81 (2015). [CrossRef] [Google Scholar]
  16. L. Gokhberg, A. Sokolov, Targeting STI policy interventions – future challenges for foresight>. In D. Meissner, L. Gokhberg, A. Sokolov (Eds.) Science, technology and innovation policy for the future: Potentials and limits of foresight studies (pp. 289-292). New York: Springer (2013). [CrossRef] [Google Scholar]
  17. A. Apokin, D. Belousov, V. Salnikov, I. Frolov, Long-term socioeconomic challenges for Russia and demand for new technology. Foresight and STI Governance, 9(4), 6-17. DOI: 10.17323/1995-459x.2015.4.6.17 (2015). [Google Scholar]
  18. F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319-339 (1989). [CrossRef] [Google Scholar]
  19. W. DeLone, E. McLean, Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95. DOI: 10.1287/isre.3.1.60 (1992). [CrossRef] [Google Scholar]
  20. W. Yeoh, A. Koronios, Critical success factors for business intelligence systems. Journal of Computer Information Systems, 50(3), 23-32. URL: https://pdfs.semanticscholar.org/7a66/7cdb124e404be1f0152260eade99b1f8d217.pdf (2010). [Google Scholar]
  21. T.Y. Prasolova, M.E. Butakova, O.V. Tiutyk, Managerial aspects of data warehousing development and implementation at housing construction enterprises of the Russian Federation based on the international practice. Competitiveness in the Global World: Economics, Science, Technology, 4(1), 27-34. URL: https://docs.wixstatic.com/ugd/dcaed9_e4db083c38d0424cb70de607e7f05a50.pdf (2018). [in Rus.]. [Google Scholar]
  22. B.L. Cooper, H.J. Watson, B.H. Wixom, D.L. Goodhue, Data warehousing supports corporate strategy at first American corporation. MIS Quarterly: Management Information Systems, 24(4), 547-567 (2000). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.