Open Access
Issue
SHS Web Conf.
Volume 65, 2019
The 8th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2 2019)
Article Number 02001
Number of page(s) 7
Section Machine Learning for Prediction of Emergent Economy Dynamics
DOI https://doi.org/10.1051/shsconf/20196502001
Published online 29 May 2019
  1. Baek, C., Elbeck, M.: Bitcoins as an investment or speculative vehicle? A first look. Appl. Econ. Lett. 22(1), 30-34 (2015) [CrossRef] [Google Scholar]
  2. Bariviera, A., Basgall, M., Hasperue, W., Naiouf, M.: Some stylized facts of the Bitcoin market. Physica A. 484(3), 82-90 (2017) [CrossRef] [Google Scholar]
  3. CNBC: Top Economists Stiglitz, Roubini and Rogoff Renew Bitcoin Doom Scenarios. https://www.cnbc.com/2018/07/09/nobel-prizewinning- economist-joseph-stiglitz-criticizesbitcoin. html (2018). Accessed 15 Feb 2019 [Google Scholar]
  4. Selmi, R., Tiwari, A., Hammoudeh, S.: Efficiency or speculation? A dynamic analysis of the Bitcoin market. Econ. Bull. 38(4), 2037-2046 (2018) [Google Scholar]
  5. Stepanenko, O.: Problems and Prospects of Financial Provision Modeling of Ecological, Economics and Production Systems in the Digital Economy. In: Proceedings of the 7th International youth conference on Perspectives of science and education, pp. 421-430 (2019) [Google Scholar]
  6. Bouoiyour, J., Selmi, R.: What does Bitcoin look like? Ann. Econ. Financ. 16(2), 449-492 (2015) [Google Scholar]
  7. Cheah, E., Fry, J.: Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of bitcoin. Econ. Lett. 130, 32-36 (2015) [CrossRef] [Google Scholar]
  8. Ciaian, P., Rajcaniova, M., Kancs, D.: The economics of BitCoin price formation. Appl. Econ. 48(19), 1799-1815 (2016) [CrossRef] [Google Scholar]
  9. Blau, B.: Price dynamics and speculative trading in bitcoin. Res. Int. Bus. Financ. 43, 15-21 (2018) [CrossRef] [Google Scholar]
  10. Balcilar, M., Bouri, E., Gupta, R., Roubaud, D.: Can volume predict bitcoin returns and volatility? A quantiles-based approach. Econ. Model. 64, 74-81 (2017) [CrossRef] [Google Scholar]
  11. Liu, Y., Tsyvinski, A.: Risks and Returns of Cryptocurrency. Technical report. National Bureau of Economic Research https://www.nber.org/papers/w24877 (2018). Accessed 15 Feb 2019 [CrossRef] [Google Scholar]
  12. Conrad, C., Custovic, A., Ghysels, E.: Long- and Short-Term Cryptocurrency Volatility Components:A GARCH-MIDAS Analysis. J. Risk Financ. Manag. 11(2), 23 (2018). doi:10.3390/jrfm11020023 [CrossRef] [Google Scholar]
  13. Sornette, D.: Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools. Springer, Heidelberg (2004) [Google Scholar]
  14. Jain, R., Nguyen, R., Tang, L., Miller, T.: Bitcoin Price Forecasting using Web Search and Social Media Data. Oklahoma State University. Paper 3601-2018. https://www.sas.com/content/dam/SAS/support/en/s as-global-forum-proceedings/2018/3601-2018.pdf (2018). Accessed 15 Feb 2019 [Google Scholar]
  15. Kim, Y., Kim, J., Kim, W., Im, J.: Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies. PLoS ONE. 17, 1-17 (2016). doi: 10.1371/journal.pone.0161197 [Google Scholar]
  16. Galeshchuk, S., Vasylchyshyn, O., Krysovatyy, A.:Bitcoin Response to Twitter Sentiments. CEUR Workshop Proceedings. 2104, 160-168. http://www.ceur-ws.org/Vol-2104/paper_199.pdf (2017). Accessed 15 Feb 2019 [Google Scholar]
  17. Peng, Y., Albuquerque, P.H.M., de Sá, J.M.C., Padula, A.J.A., Montenegro, M.R.: The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with Support Vector Regression. Expert Syst. Appl. 97, 177-192 (2018) [CrossRef] [Google Scholar]
  18. Amjad, M., Shah, D.: Trading Bitcoin and Online Time Series Prediction. In: NIPS 2016 Time Series Workshop. http://proceedings.mlr.press/v55/amjad16.pdf (2016). Accessed 15 Feb 2019 [Google Scholar]
  19. Saxena, A., Sukumar, T.: Predicting bitcoin price using LSTM and compare its predictability with ARIMA model. Int. J. Pure Appl. Math. 119(17), 2591-2600 (2018) [Google Scholar]
  20. McNally, S.: Predicting the price of Bitcoin using Machine Learning. Doctoral dissertation, National College of Ireland (2016) [Google Scholar]
  21. Rebane, J., Karlsson, I.: Seq2Seq RNNs and ARIMA models for Cryptocurrency Prediction: A Comparative Study. In: SIGKDD Fintech’18, August 2018, London, UK. https://fintech.kdd2018.a.intuit.com/papers/DSF2018_paper_papapetrou.pdf (2018). Accessed 15 Feb 2019 [Google Scholar]
  22. Kurgan, L., Musilek, P.: A survey of Knowledge Discovery and Data Mining process models. Knowl. Eng. Rev. 21(1), 1-24 (2006) [CrossRef] [Google Scholar]
  23. Breiman, L., Friedman, J., Stone, C., Olshen, R.:Classification and Regression Trees. Chapman and Hall/CRC, Boca Ration (1984) [Google Scholar]
  24. Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001) [CrossRef] [Google Scholar]
  25. Tong, H.: Threshold models in Nonlinear Time Series Analysis. Springer-Verlag, NewYork (1983) [CrossRef] [Google Scholar]
  26. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189-1232 (2001) [CrossRef] [Google Scholar]
  27. Chipman, H., George, E., McCulloch, R.: Bayesian CART model search. J. Am. Stat. Assoc. 93, 935-948 (1998) [CrossRef] [Google Scholar]
  28. Chen, J., Chen, Z.: Extended Bayesian information criteria for model selection with large model spaces. Biometrika. 95(3), 759-771 (2008) [CrossRef] [Google Scholar]
  29. Yahoo Finance. https://finance.yahoo.com (2019). Accessed 2 Mar 2019 [Google Scholar]
  30. Peters, E.E.: Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. John Wiley and Sons, Hoboken (1994) [Google Scholar]
  31. Derbentsev, V., Kibalnyk, L., Radzihovska, Yu.:Modelling Multifractal Properties of Cryptocurrency Market using Hurst Exponent and Detrended Fluctuation Analysis. J. Environ. Econ. Manag. Special Issue (2019, in press) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.