Open Access
SHS Web Conf.
Volume 65, 2019
The 8th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2 2019)
Article Number 04008
Number of page(s) 8
Section Mathematical Methods, Models, Informational Systems and Technologies in Economics
Published online 29 May 2019
  1. Munandar, Tb.: Analysis of Regional Development Disparity with Clustering Technique Based Perspective. International journal of advanced research in computer science. 6(1), 137-141 (2015) [Google Scholar]
  2. Munandar, Tb., Azhari, Musdholifah, A., Arsyad, L.: Modified agglomerative clustering with location quotient for identification of regional potential sector. Journal of theoretical and applied information technology. 95(5), 1191-1199 (2017) [Google Scholar]
  3. Munandar, Tb., Retantyo, W.: Fuzzy-Klassen Model for Development Disparities Analysis based on Gross Regional Domestic Product Sector of a Region. International Journal of Computer Applications. 123(7), 17-22 (2015) [Google Scholar]
  4. Novkovska, B.: Regional Development Disparities And Their Connection With Hidden Economy. UTMS Journal of Economics. 8(2), 151-158 (2017) [Google Scholar]
  5. Lukovics, M.: Measuring Regional Disparities on Competitiveness Basis. In: Bajmócy, Z., Lengyel, I. (eds.) Regional Competitiveness, Innovation and Environment, pp. 39-53. JATEPress, Szeged (2009) [Google Scholar]
  6. Nosova, O.: The Innovation Development in Ukraine: Problems and Development Perspectives. International journal of innovation and business strategy. 2, 1-13 (2013) [Google Scholar]
  7. Spicka, J.: The Economic Disparity in European Agriculture in the Context of the Recent EU Enlargements. Journal of Economics and Sustainable Development. 4(15), 125-134 (2013) [Google Scholar]
  8. Hryhorkiv, V., Verstiak, A., Verstiak, O., Hryhorkiv, M.: Regional Economic Growth Disparities in Ukraine: Input-Output Analysis Approach. Scientific Annals of Economics and Business. 64(4), 447-457 (2017) [CrossRef] [Google Scholar]
  9. Maksymenko, S.: Ukraine’s Regional Economic Growth and Analysis of Regional Disparities. Working Paper 6053, Department of Economics, University of Pittsburgh (2016) [Google Scholar]
  10. Zadeh, L.A.: Fuzzy Sets. Information and Control. 8, 338-358 (1965). [Google Scholar]
  11. Gosain, A., Dahiya, S.: Performance Analysis of Various Fuzzy Clustering Algorithms: A Review. Procedia Computer Science. 79, 100-111 (2016) [CrossRef] [Google Scholar]
  12. Miller, D.J., Nelson, C., Cannon, M.B., Cannon, K.P.: Comparison of Fuzzy Clustering Methods and Their Applications to Geophysics Data. Applied Computational Intelligence and Soft Computing. 2009, Article 876361 (2009) [CrossRef] [Google Scholar]
  13. Malhotra, V.K., Kaur, H., Alam, M.A.: An Analysis of Fuzzy Clustering Methods. International Journal of Computer Applications. 94(19), 9-12 (2014) [Google Scholar]
  14. Yang, M.-S.: A survey of fuzzy clustering. Mathematical and Computer Modelling. 18(11), 1-16 (1993) [CrossRef] [Google Scholar]
  15. Joopudi, S., Rathi, S.S., Narasimhana, S., Rengaswamyb, R.: A New Cluster Validity Index for Fuzzy Clustering. IFAC Proceedings Volumes. 46(32), 325-330 (2013) [CrossRef] [Google Scholar]
  16. Ruspini, E.H.: Numerical methods for fuzzy clustering. Information Sciences. 2(3), 319-350 (1970) [CrossRef] [Google Scholar]
  17. Ruspini, E.H.: A new approach to clustering. Information and Control. 15(1), 22-32 (1969). [CrossRef] [Google Scholar]
  18. Gitman, I., Levine, M.D.: An Algorithm for Detecting Unimodal Fuzzy Sets and its Application as a Clustering Technique. IEEE Transactions on Computers. C-19(7), 583-593 (1970) [CrossRef] [Google Scholar]
  19. Kassambara, A.: Advanced clustering. DataNovia (2018). Accessed 22 Jan 2019 [Google Scholar]
  20. RPubs, Unsupervised Learning - Clustering Fuzzy C Means. (2018). Accessed 12 Feb 2019 [Google Scholar]
  21. Ferraro, M.B., Giordani, P.: A toolbox for fuzzy clustering using the R programming language. Workshop on Clustering methods and their applications (2014). Accessed 18 Jan 2019 [Google Scholar]
  22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys. 31(3), 264-323 (1999) [Google Scholar]
  23. Bellman, R., Kalaba, R., Zadeh, L.A.: Abstraction and pattern classification. Journal of Mathematical Analysis and Applications. 13(1), 1-7 (1966). [CrossRef] [Google Scholar]
  24. Giordani, P., Ferraro, M.B., Serafini, A.: Package ‘fclust’. CRAN http://cran.rproject. org/web/packages/fclust/fclust.pdf (2018). Accessed 12 Feb 2019 [Google Scholar]
  25. Cebeci, Z., Yildiz, F., Kavlak, A.T., Cebeci, C., Onder, H.: Package ‘pplust’. CRAN https://cran.rproject. org/web/packages/ppclust/ppclust.pdf (2019). Accessed 12 Feb 2019 [Google Scholar]
  26. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M.: Package ‘cluster’. CRAN https://cran.rproject. org/web/packages/cluster/cluster.pdf (2018). Accessed 12 Feb 2019 [Google Scholar]
  27. Kassambara, A., Mundt, F.: Package ‘factoextra’. CRAN https://cran.rproject. org/web/packages/factoextra/factoextra.pdf (2017). Accessed 12 Feb 2019 [Google Scholar]
  28. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact wellseparated clusters. Journal of Cybernetics. 3(3), 32-57 (1973). [Google Scholar]
  29. Bezdek, J.C.: Cluster validity with fuzzy sets. Journal of Cybernetics. 3(3), 58-73 (1974). [CrossRef] [Google Scholar]
  30. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, Norwell (1981). [Google Scholar]
  31. State Statistics Service of Ukraine. (2019). Accessed 20 Feb 2019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.