Open Access
Issue
SHS Web Conf.
Volume 65, 2019
The 8th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2 2019)
Article Number 06002
Number of page(s) 6
Section Monitoring, Modeling, Forecasting and Preemption of Crisis in Socio-Economic Systems
DOI https://doi.org/10.1051/shsconf/20196506002
Published online 29 May 2019
  1. Andryushchenko, I.S.: Analiz sotsial’noekonomichnykh pokaznykiv rozvytku promyslovosti Ukrayiny (Analysis of socio-economic indicators of industrial development in Ukraine) Naukovyy visnyk Mizhnarodnoho humanitarnoho universytetu. Seriya:Ekonomika i menedzhment. 23(1), 86-90 (2017). [Google Scholar]
  2. Sitak, I.L., Korobkov, D.V., Mishchenko, V.A.:Sovremennyye metody opredeleniya ustoychivosti predpriyatiya (Modern methods for determining the sustainability of an enterprise). Business Inform. 9, 92-98 (2012) [Google Scholar]
  3. Vasin, S.M., Hamidullaeva, L.A., Finogeev, A.G., Mkrtchyan, V.S., Berezin, A.A., Palatkin, I.V.:Sotsial’nyye media kak indikator tsifrovoy aktivnosti i tsifrovoy zrelosti naseleniya (Social media as an indicator of digital activity and digital maturity of the population). Problems of the modern economy. 3(67), 32-39 (2018) [Google Scholar]
  4. Moschenok, V.V: Ispol’zovaniye neyronnykh setey dlya modelirovaniya zavisimostey parametrov investitsionnykh proyektov (Using neural networks for modeling the dependencies of the parameters of investment projects). Donetsk, Donetsk National Technical University, 54-60 (2012) [Google Scholar]
  5. Galushkin, A.I.: Gde primenyayut neyrokomp’yutery v finansovoy deyatel’nosti (Where neurocomputers are used in financial activities). https://neuronus.com/stat/175-primeneniyanejrokompyuterov- v-finansovoj-deyatelnosti.html (2019). Accessed 21 Mar 2019 [Google Scholar]
  6. Khlystova, O.V.: Strategicheskoye upravleniye na osnove neyrosetevogo modelirovaniya (Strategic management based on neural network modeling). Management in Russia and Abroad 3, 18-24 (2011) [Google Scholar]
  7. Mints, A.Yu., Bezzubkova, E.E.: Metody prognozirovaniya kolichestva bankrotstv v Ukraine (Methods for predicting the number of bankruptcies in Ukraine). Economics and management organization 1(17)/2(18), 174-181 (2014) [Google Scholar]
  8. Veselý, A.: Economic classification and regression problems and neural networks. Agric. Econ. Czech. 57, 150-157 (2011) [CrossRef] [Google Scholar]
  9. Abounoori, E., Bagherpour, M.: Estimation of industrial production costs, using regression analysis, neural networks or hybrid neural-regression method. Iranian Economic Review. 11(2), 17-29 (2005) [Google Scholar]
  10. Angelidis, D., Lyroudi, K., Koulakiotis, A.:Forecasting Daily Returns: A Comparison Of Neural Networks With Parametric Regression Analysis. International Business & Economics Research Journal. 5(1), 75-82 (2006). doi:10.19030/iber.v5i1.3451 [Google Scholar]
  11. Barndorff-Nielsen, O.E., Shephard, N.: Econometric Analysis of Realised Covariation: High Frequency Covariance, Regression and Correlation in Financial Economics. Econometrica. 72(3), 885-925 (2002). doi:10.2139/ssrn.305583 [CrossRef] [Google Scholar]
  12. Khalikova, E., Lebert, T., Butusov, E.: Ispol’zovaniye instrumentariya matematicheskoy statistiki dlya prognozirovaniya investitsionnoinnovatsionnogo potentsiala Respubliki Bashkortostan (Using the tools of mathematical statistics to predict the investment and innovation potential of the Republic of Bashkortostan). Economics and management 6, 49-55 (2014) [Google Scholar]
  13. Raevneva, E. V., Gorokhovaya, O. I.: Formirovaniye indikativnykh znacheniy pokazateley raspoznavaniya klassa krizisa promyshlennykh predpriyatiy (Formation of indicative values of indicators of recognition of the crisis class of industrial enterprises). Business Inform. 7(2), 21-23 (2011) [Google Scholar]
  14. Ponomarenko, E.E.: Ispol’zovaniye nechotkikh mnozhestv pri otsenke finansovoy bezopasnosti sub’yektov khozyaystvovaniya promyshlennosti (The use of fuzzy sets in assessing the financial security of industrial entities). Business Inform 9, 109-113 (2012) [Google Scholar]
  15. Altman, E. J.: Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance. 4, 589-609 (1968) [CrossRef] [Google Scholar]
  16. Beaver, W.: Financial Ratios as Predictors of Failure. Empirical Research in Accounting, Selected Studies. Journal of Accounting Research. 4, 71-111 (1966) [CrossRef] [Google Scholar]
  17. Toffler, R., Tishaw, H.: Going, going, gone - four factors which predict. Accountancy. 88, 50-54 (1977) [Google Scholar]
  18. Kondrashuhin, A., Pepa, T. & Fedorova, V.:Finansova sanatsia ta bankrutstvo pidpryiemstv [Financial reorganization and enterprise bankruptcy]. Tsentr navchalnoi literatury, Kyiv (2007) [Google Scholar]
  19. Gmurman, V.Ye.: Teoriya veroyatnostey i matematicheskaya statistika (Probability theory and mathematical statistics). Vysshaya shkola, Moscow (1972) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.