Open Access
Issue
SHS Web Conf.
Volume 68, 2019
7th International Interdisciplinary Scientific Conference SOCIETY. HEALTH. WELFARE
Article Number 02012
Number of page(s) 8
Section Health: Public Health and Health Promotion
DOI https://doi.org/10.1051/shsconf/20196802012
Published online 25 November 2019
  1. Hauschild V.D., DeGroot D.W., Hall S.M., Grier T.L., Deaver K.D., Hauret K.G., Jones B.H., Fitness tests and occupational tasks of military interest: a systematic review of correlations. Occup. Environ. Med. 74(2), 144–153 (2017) (http://dx.doi.org/10.1136/oemed-2016-103684) [CrossRef] [Google Scholar]
  2. Nindl B.C., Billing D.C., Drain J.R., Beckner M.E., Greeves J., Groeller H., Teien H.K., Marcora S., Moffitt A., Reilly T. N.A.S., Young A.J., Friedl K.E., Perspectives on resilience for military readiness and preparedness: Report of an international military physiology roundtable. J. Sci. Med. Sport 21, 1116–1124 (2018) (https://doi.org/10.1016/j.jsams.2018.05.005) [CrossRef] [Google Scholar]
  3. Burley S.D., Drain J.R., Sampson J.A., Groeller H., Positive, limited and negative responders: The variability in physical fitness adaptation to basic military training. J. Sci. Med. Sport 21, 1168–1172 (2018) (https://doi.org/10.1016/j.jsams.2018.06.018) [CrossRef] [Google Scholar]
  4. Blue M.N.M., Smith-Ryan A.E., Trexler E.T., Hirsch K.R., The effects of high intensity interval training on muscle size and quality in overweight and obese adults. J. Sci. Med. Sport. 21, 207–212 (2018) (https://doi.org/10.1016/j.jsams.2017.06.001) [CrossRef] [Google Scholar]
  5. Knapik J.J., Sharp M.A., Canham-Chervak M., Risk factors for training related injuries among mem and women in basic combat training. Med. Sci. Sports & Exercise 33(6), 946–954 (2001) [CrossRef] [Google Scholar]
  6. Jones B.H., Bovee M.W., Harris J.M., Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Sports Med. 21(5), 705–710 (1993) (https://doi.org/10.1177/036354659302100512) [CrossRef] [Google Scholar]
  7. Roy T.C., Knapik J.J., RitlandB.M., Risk factors for musculoskeletal injuries for soldiers deployed to Afghanistan. Aviation, Space and Environ. Med. 83(11), 1060–1066 (2012) (https://doi.org/10.3357/ASEM.3341.2012) [CrossRef] [Google Scholar]
  8. Hynynen E., Uusitalo A., Kontinen N., Cardiac autonomic responses to standing up and cognitive task in overstrained athletes. Internat. J. Sports Med. 2997, 552–558 (2008) (https://doi.org/10.1055/s-2007-989286) [CrossRef] [Google Scholar]
  9. Smith C.D., Cooper A.D., Merullo D.J., Sleep restriction and cognitive load after performance on a simulated marksman ship task. J. Sleep Res. (2017) (http://dx.doi.org/10.1111/jsr.12637) [Google Scholar]
  10. Liberman H.R., Castellani J.W., Young A.J., Cognitive function and mood during acute cold stress after extended military training and recovery. Aviation, Space and Environ. Med. 80(7), 629–636 (2009) [CrossRef] [Google Scholar]
  11. Sawka M.N., Leon L.R., Montain S.J., Integrated physiological mechanisms of exercise performance, adaptation and maladaptation to heat stress. Comprehensive Physiology 1(4), 1883–1928 (2011) [CrossRef] [Google Scholar]
  12. Wardle L.S., GreevesJ.P., Mitigating the risk of musculoskeletal injury: A systematic review of the most effective injury prevention strategies for military personnel. Journal of Science and Medicine in Sport 20, S3–S10 (2017) (https://doi.org/10.1016/j.jsams.2017.09.014) [CrossRef] [Google Scholar]
  13. CameronK.L., OwensB.D., The burden and management of sports-related musculoskeletal injuries and conditions within the US military. Clin. Sports Med. 33(4), 573–589 (2014) [CrossRef] [Google Scholar]
  14. ZambraskiE.J., YancosekK.E., Prevention and rehabilitation of musculoskeletal injuries during military operations and training. J. Strength and Conditioning Res. 26(2), S101–S106 (2012) [Google Scholar]
  15. NindlB.C., WilliamsT.J., DeusterP.A., Strategies for optimizing military physical readiness and preventing musculoskeletal injuries in the 21st century. US Army Medical Department Journal, pp. 5–23 (2013) [Google Scholar]
  16. NindlB.C., JaffinD.P., DretschM.N., Human performance optimization metrics: consensus findings, gaps, and recommendations for future research. J. Strength and Conditioning Res. 29(11), S221–S245 (2015) (https://doi.org/10.1519/JSC.0000000000001114) [CrossRef] [Google Scholar]
  17. KyröläinenH., Pihlainen K., Vaara J.P., Ojanen T., Santtila M., Optimising training adaptations and performance in military environment. J. Sci. Med. Sport 21, 1131–1138 (2018) (https://doi.org/10.1016/j.jsams.2017.11.019) [CrossRef] [Google Scholar]
  18. Santtila M., Häkkinnen K., Karavirta I., Changes in cardiovascular performance during an 8-week military basic training period combined with added endurance or strength training. Military Med. 173(12), 1173–1179 (2008) [CrossRef] [Google Scholar]
  19. Knapik J.J., Harman E.A., Steelman R.A., A systematic review of the effects of physical training on load carriage performance. J. Strength and Conditioning Res. 26(2), 585–597 (2012) (https://doi.org/10.1519/JSC.0b013e3182429853) [CrossRef] [Google Scholar]
  20. Boutcher S.H., Dunn S.L., Factors that may impede the weight loss response to exercise – based intervention. Obesity Reviews 10(6), 671–680 (2009) (https://doi.org/10.1111/j.1467-789X.2009.00621.x) [CrossRef] [Google Scholar]
  21. Boudou P., Sobngwi E., Mauvais-Jarvis F. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men, Eur. J. Endocrinol. 1149(5), 421–424 (2003) (https://doi.org/10.1038/sj.ijo.0803781) [CrossRef] [Google Scholar]
  22. Trapp E., Heydari M., Freund J., The effects of high intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Internal J. Obesity 32(4), 684–691 (2008) (https://doi.org/10.1038/sj.ijo.0803781) [CrossRef] [Google Scholar]
  23. Bradshaw P.T., Monda K.L., Stevens J., Metabolic syndrome in healthy obese, overweight, and normal weight individuals: the arteriosclerosis risk in communities' study. Obesity 21(1), 203–210 (2012) (https://doi.org/10.1002/oby.20248) [CrossRef] [Google Scholar]
  24. Cadore E.L., Gonzalez-Izal M., Pallares J.G., Muscle conduction velocity, strength, neural activity, and morphological changes after eccentric and concentric training. Scandinavian J. Med. Sci. Sports 24(5), e343–e352 (2014) (https://doi.org/10.1111/sms.12186) [CrossRef] [Google Scholar]
  25. Sanderson P.W., Stacy A.C., Friedl K.E., Biddle S.J.H., The association between obesity related health risk and fitness test results in British Army personnel J. Sci. Med. Sport 21, 1173–1177 (2018) (https://doi.org/10.1016/j.jsams.2018.08.003) [CrossRef] [Google Scholar]
  26. Pierce J.R., DeGroot D.W., Grier T.L., Hauret K.G., Nindl B.C., East W.B., McGurk M.S., Jones B.H., Body mass index predicts selected physical fitness attributes but is not associated with performance on military relevant tasks in US. J. Sci. Med. Sport 20, S79–S84 (2017) (https://doi.org/10.1016/j.jsams.2017.08.021) [CrossRef] [Google Scholar]
  27. Kuorinka I., Jonsson B., Kilbom A., Vinterberg H., Biering-Søorensen F., Andersson G., Jøorgensen K., Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Applied Ergonomics 18(3), 233–237 (1987) (https://doi.org/10.1016/0003-6870(87)90010-X) [CrossRef] [PubMed] [Google Scholar]
  28. Maze R., Cavallaro G., Battling bureaucracy: the way forward requires modernizing the modernization process. Army Magazine 682018, 36–38 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.