Open Access
SHS Web Conf.
Volume 73, 2020
Innovative Economic Symposium 2019 – Potential of Eurasian Economic Union (IES2019)
Article Number 01004
Number of page(s) 16
Section Potential of the Eurasian Economic Union
Published online 13 January 2020
  1. D. Janosova, Human Resources and Personnel Marketing Management in Business Practice from the Perspective of Globalization. Globalization and its Socio- Economic Consequences, 16th International Scientific Conference Proceedings, PTSI-V, pp. 767-774 (2016) [Google Scholar]
  2. R. Furst, G. Pleschova. Czech and Slovak Relations with China: Contenders for China’s Favour. Europe-Asia Studies, 62(8),1363-1381 (2010) [CrossRef] [Google Scholar]
  3. A.B. Bernard, Exporting and Productivity in the USA. Oxford Review of Economic Policy, 20(3),343-357 (2004) [CrossRef] [Google Scholar]
  4. M. Vochozka, J. Vrbka, Estimation of the development of the Euro to Chinese Yuan exchange rate using artificial neural networks. SHS Web of Conferences: Innovative Economic Symposium 2018 - Milestones and Trends of World Economy (IES2018), 61 (2019) [Google Scholar]
  5. J. Drabek, L. Lipkova, M. Gress, Development of the balance of payments in the Czech Republic since 1993 with the emphasis on current account. Economic Annals-XXI, 7-8(2), 4-7 (2015) [Google Scholar]
  6. N. Li, L.P. Sun, X. Luo, R. Kang, M.D. Jia, Foreign Trade Structure, Opening Degree and Economic Growth in Western China. Economies, 7(2) (2019) [Google Scholar]
  7. P. Hnat, M. Tlapa, China-V4 Investment regime - a Czech perspective. Trends and Perspectives in Development of China - V4 Trade and Investment, pp. 82-95 (2014) [Google Scholar]
  8. M. Sheikhan, N. Mohammadi, Time series prediction using PSO-optimized neural network and hybrid feature selection algorithm for IEEE load data. Neural Computing and Applications 23(3-4), 1185-1194 (2013) [CrossRef] [Google Scholar]
  9. S. De Baets, N. Harvey, Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support. International Journal of Forecasting, 34(2),163-180 (2018) [CrossRef] [Google Scholar]
  10. A. Leon-Avarez, J. Betancur-Gomez, F. Jaimes-Barragan, H. Grisales-Romero, Clinical and epidemiological round: Interrupted time series. Iatreia, 29(3),344-351 (2016) [Google Scholar]
  11. L. Ashander, J. Kliestikova, P. Durana, J. Vrbka, The decision-making logic of big data algorithmic analytics. Contemporary Readings in Law and Social Justice, 11(1),57-62 (2019) [CrossRef] [Google Scholar]
  12. F. Rodrigues, I. Markou, F.C. Pereira, Combining time-series and textual data for taxi demand prediction in event areas: A deep learning approach. Information Fusion, 49, 120-129 (2019) [CrossRef] [Google Scholar]
  13. P. Rostan, A. Rostan, The versatility of spectrum analysis for forecasting financial time series. Journal of Forecasting, 37(3),327-339 (2018) [CrossRef] [Google Scholar]
  14. M.H. Pesaran, R.P. Smith, Signs of impact effects in time series regression models. Economics Letters, 122(2),150-153 (2014) [CrossRef] [Google Scholar]
  15. K. Valaskova, T. Kliestik, M. Kovacova, Management of financial risks in Slovak enterprises using regression analysis. Oeconomia Copernicana, 9(1),105-121 (2018) [CrossRef] [Google Scholar]
  16. T. Kliestik, Models of autoregression conditional heteroskedasticity garch and arch as a tool for modeling the volatility of financial time series. Ekonomicko- manazerske spektrum, 7(1),2-10 (2013) [Google Scholar]
  17. Y.H. Hu, J.N. Hwang, Handbook of neural network signal processing. Boca Raton: CRC Press (2002) [Google Scholar]
  18. Y. Chen, B. Yang, J. Dong, Time-series prediction using a local linear wavelet neural network. Neurocomputing, 69(4-6), 449-465 (2006) [CrossRef] [Google Scholar]
  19. D. Sanchez, P. Melin, Modular Neural Networks for Time Series Prediction Using Type-1 Fuzzy Logic Integration. Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, pp. 141-154 (2015) [Google Scholar]
  20. Z. Rowland, J. Vrbka, Using artificial neural networks for prediction of key indicators of a company in global world. 16th International Scientific Conference on Globalization and its Socio-Economic Consequences, pp. 1896-1903 (2016) [Google Scholar]
  21. J. Vrbka, Z. Rowland, Stock price development forecasting using neural networks. SHS Web of Conferences: Innovative Economic Symposium 2017 - Strategic Partnership in International Trade, 39 (2017) [Google Scholar]
  22. D. Santin, On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques. Applied Economics Letters, 15(8),597-600 (2008) [CrossRef] [Google Scholar]
  23. M.S. Hossain, Z.C. Ong, Z. Ismail, S. Noroozi, S.Y. Khoo, Artificial neural networks for vibration based inverse parametric identifications: A review. Applied Soft Computing, 52, 203-219 (2017) [CrossRef] [Google Scholar]
  24. A. Tealab, Time series forecasting using artificial neural networks methodologies: A systematic review. Future Computing and Informatics Journal, 3(2),334-340 (2018) [CrossRef] [Google Scholar]
  25. B. Sloboda, Book review: Forecasting, time series, and regression: An applied approach, 4th edition. International Journal of Forecasting, 21(2),391-392 (2005) [CrossRef] [Google Scholar]
  26. J. Horak, T. Krulicky, Comparison of neural networks and regression time series in estimating US and China trade balance. International Masaryk Conference for Ph.D. Students and Young Researchers, pp. 244-253 (2018) [Google Scholar]
  27. K. Valaskova, T. Kliestik, L. Svabova, P. Adamko, Financial risk measurement and prediction modelling for sustainable development of business entities using regression analysis. Sustainability, 10(7) (2018) [CrossRef] [Google Scholar]
  28. L. Yu, S. Wang, K. K. Lai, Forecasting China’s Foreign Trade Volume with a Kernel-Based Hybrid Econometric-Ai Ensemble Learning Approach. Journal of Systems Science and Complexity, 21(1),1-19 (2008) [CrossRef] [Google Scholar]
  29. Z. Cai, L. Chen, Y. Fang, A New Forecasting Model for USD/CNY Exchange Rate. Studies in Nonlinear Dynamics and Econometrics, 16(3) (2012) [Google Scholar]
  30. Z. Liu, Z. Zheng, X. Liu, G. Wang, Modelling and Prediction of the CNY Exchange Rate Using RBF Neural Network. 2009 International Conference on Business Intelligence and Financial Engineering, pp. 38-41 (2009) [Google Scholar]
  31. T.S. Chang, M. Vochozka, A comparative study of artificial neural networks, and decision trees for digital game content stocks price prediction. Expert Systems with Applications, 38(12),14846-14851 (2019) [CrossRef] [Google Scholar]
  32. J. Weijin, X. Yuhui, A novel method for nonlinear time series forecasting of time- delay neural network. Wuhan University Journal of Natural Sciences, 11(5), 1357-1361 (2006) [CrossRef] [Google Scholar]
  33. A.F. De Souza, F.D. Freitas, A.G.C. De Almeida, High performance prediction of stock returns with VG-RAM weightless neural networks. Workshop on High Performance Computational Finance at SC10 (WHPCF), pp. 1-8 (2010) [Google Scholar]
  34. H. Dongdong, Z. Wenhong, The Forecast of Price Index Based on Wavelet Neural Network. Fourth International Conference on Business Intelligence and Financial Engineering, pp. 32-36 (2011) [Google Scholar]
  35. G. Tkacz, Neural network forecasting of Canadian GDP growth. International Journal of Forecasting, 17(1),57-69 (2001) [CrossRef] [Google Scholar]
  36. C. Wang, X. Zhang, M. Wang, M.K. Lim, P. Ghadimi, Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques. Resources Policy, 63 (2019) [CrossRef] [Google Scholar]
  37. M. Vochozka, J. Horak, Comparison of Neural Networks and Regression Time Series When Estimating the Copper Price Development. Sustainable Growth and Development of Economic Systems, pp. 169-181 (2019) [Google Scholar]
  38. S. Vijayalakshmi, G.P. Girish, Artificial neural networks for spot electricity price forecasting: A review. International Journal of Energy Economics and Policy, 5(4),1092-1097 (2015) [Google Scholar]
  39. A. Emam, H. Min, The artificial neural network for forecasting foreign exchange rates. International Journal of Services and Operations Management, 5(6) (2009) [CrossRef] [Google Scholar]
  40. World Bank [online], Available at: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.