Open Access
Issue
SHS Web Conf.
Volume 73, 2020
Innovative Economic Symposium 2019 – Potential of Eurasian Economic Union (IES2019)
Article Number 02003
Number of page(s) 9
Section Stabilization and Development of SMEs in Rural Areas
DOI https://doi.org/10.1051/shsconf/20207302003
Published online 13 January 2020
  1. T. Klieštik, M. Mišánková, K. Valášková, L. Švábová, Bankruptcy prevention: New effort to reflect on legal and social changes. Science and Engineering Ethics, 24(2), 791-803 (2018) [Google Scholar]
  2. R.A. Brealey, S.C. Myers, F. Allen, Principles of corporate finance. 10th ed., 914 p. (2013) [Google Scholar]
  3. J. Vrbka, Z. Rowland, Assessing the financial health of companies engaged in mining and extraction using methods of complex evaluation of enterprises. Contributions to Economics, 321-333 (2019) [Google Scholar]
  4. D. Nenkov, Growth policy and value creation in companies. Ikonomicheski Izsledvania, 25(4), 36-65 (2016) [Google Scholar]
  5. J. Klieštiková, M. Mišánková, T. Klieštik, Bankruptcy in Slovakia: International comparison of the creditor´s position. Oeconomia Copernicana, 8(2), 221-237 (2017) [CrossRef] [Google Scholar]
  6. A. Bluszcz, A. Kijewska, A. Sojda, Economic value added in metallurgy and mining sector in Poland. Metalurgija, 54(2), 437-440 (2015) [Google Scholar]
  7. J. Vrbka, Modeling the future development of top company indicator EVA equity using indicator breakdown and sensitivity analysis on an example of a specific company. Proceedings of the 5th International Conference Innovation Management, Entrepreneurship and Sustainability (IMES2017), pp. 1095-1106 (2017) [Google Scholar]
  8. I. Issham, A.S.M. Fazilah, Y.S. Hwa, A.A. Kamil, Economic value added (EVA) as a performance measurement for GLCs vs Non-GLCs: Evidence in Bursa Malaysia. Prague Economic Papers, 17(2), 168-179 (2008) [CrossRef] [Google Scholar]
  9. B. Morard, F.O. Balu, Developing a practical model for calculating the economic value added. Economic Computation and Economic Cybernetic Studies and Research, 43(3), 107-122 (2009) [Google Scholar]
  10. V. Stehel, M. Vochozka, The Analysis of the Economical Value Added in Transport. Nase More, 63(3), 185-188 (2016) [CrossRef] [Google Scholar]
  11. B. Kollar, T. Klieštik, Simulation approach in credit risk models. 4th International Conference on Applied Social Science. Information Engineering Research Institute, Advances in Education Research, 51, 150-155 (2014) [Google Scholar]
  12. P. Linna, H. Jaakkola, Toward Finding Culture Assessment Tools for SE Companies. PICMET 2010: Technology Management for Global Economic Growth (2010) [Google Scholar]
  13. M. Vochozka, Z. Rowland, J. Vrbka, Financial analysis of an average transport company in the Czech Republic. Nase More, 63(3), 227-236 (2016) [CrossRef] [Google Scholar]
  14. M. Dieter, C. Thoroe, Forestry and forest industry sector in the Federal Republic of Germany according to the new European-Wide sector definition. Forstwissenschaftliches Centralblatt, 122(2), 138-151 (2003) [CrossRef] [Google Scholar]
  15. M. Levá, H. Čermáková, H. Vostrovská, M. Stárová, The Profitability Assessment of Selected Companies Providing Services to Forestry in the Czech Republic. Reports of Forestry Research-Zpravy lesnickeho vyzkumu, 61(2), 145-150 (2016) [Google Scholar]
  16. L. Vnoučková, H. Urbancová, H. Smolová, Strategic talent management in agricultural and forestry companies. Agricultural Economics (Zemědělská ekonomika), 62(8), 345-355 (2016) [CrossRef] [Google Scholar]
  17. Z. Burivalova, Ç.H. Şekercioğlu, L.P. Koh, Thresholds of Logging Intensity to Maintain Tropical Forest Biodiversity. Current Biology, 24(16), 1893-1898 (2014) [CrossRef] [Google Scholar]
  18. M.S. Hossain, Z.CH. Ong, Z. Ismail, S. Noroozi, S.Y. Khoo, Artificial neural networks for vibration based inverse parametric identifications: A review. Applied Soft Computing, 52, 203-219 (2017) [CrossRef] [Google Scholar]
  19. J. Vrbka, Z. Rowland. Stock price development forecasting using neural networks. SHS Web of Conferences: Innovative Economic Symposium 2017 – Strategic Partnership in International Trade, 39 (2017) [Google Scholar]
  20. P. Horváthová, Methodology of Introduction and Utilization of Talent Management in the Organization. Littera Scripta, 6(2), 35-46 (2013) [Google Scholar]
  21. A. Joshi, S.S.Y. Lam, Business performance prediction using recurrent neural networks. IIE Annual Conference and Exhibition, pp. 1-6 (2006) [Google Scholar]
  22. R.P. Dameri, R. Garelli, M. Resta, Unsupervised Neural Networks for the Analysis of Business Performance at Infra-City Level. Organizational Innovation and Change, 203-215 (2016) [Google Scholar]
  23. S.G. Li, Z.M. Wu, Business performance forecasting of convenience store based on enhanced fuzzy neural network. Neural Computing and Applications, 17(5-6), 569-578 (2008) [CrossRef] [Google Scholar]
  24. I. Neumaierová, I. Neumaier, Finanční analýza průmyslu a stavebnictví za rok 2007 [Financial analysis of industry and construction for the year 2007]. Analýzy MPO [Analyzes of MIT], 187 p. (2008) [Google Scholar]
  25. G. Wöhe, E. Kislingerová, Úvod do podnikového hospodářství [Introduction to business economy]. 2nd ed. Prague: C.H. Beck, 928 p. (2007) [Google Scholar]
  26. J. Vrbka, Z. Rowland, P. Šuleř, Comparison of neural networks and regression time series in estimating the development of the EU and the PRC trade balance. SHS Web of Conferences: Innovative Economic Symposium 2018 – Milestones and Trends of World Economy, 61 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.