Open Access
Issue
SHS Web Conf.
Volume 74, 2020
The 19th International Scientific Conference Globalization and its Socio-Economic Consequences 2019 – Sustainability in the Global-Knowledge Economy
Article Number 05002
Number of page(s) 9
Section Regions and Economic Resilience
DOI https://doi.org/10.1051/shsconf/20207405002
Published online 10 January 2020
  1. Anadarajan, M., Lee, P., Anadarajan, A., Bankruptcy prediction of financially stressed firm: an examination of the predictive accuracy of artificial neural networks. Int. J. Intell. Syst. Acc. Fin. Mgmt 10, 69-81. (2001) [CrossRef] [Google Scholar]
  2. Cisko, S., Kliestik, T., Company Financial Management II. Zilina: Edis – Publishing ZU. ISBN 978-80-554-0684-8. (2013) [Google Scholar]
  3. Fernandez-Gamezi, M. A., Dieguez-Soto, J., Santos, Jose Antonio C., et al., Bankruptcy prediction of family firms using combined classifiers. Journal of Scientific & Industrial Research 78, 269-273. (2019) [Google Scholar]
  4. Gavurova, B., Packova, M., Misankova, M., Smrcka, L., Predictive potential and risks of selected bankruptcy prediction models in the Slovak business environment. Journal of Business Economics and Management 18, 1156-1173. (2017) [CrossRef] [Google Scholar]
  5. Kliestik T., Kocisova K., Misankova, M., Logit and probit model used for prediction of financial health of company. Procedia Economics and finance 23, 850-855. (2015) [CrossRef] [Google Scholar]
  6. Kovacova, M., Kliestik, T., Logit and probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy 12, 775–791. (2017) [Google Scholar]
  7. Muller, G. H., Steyn-Bruwer, B. W., Hamman, W.D., Predicting financial distress of companies listed on the JSE – a comparison of techniques. South African Journal of Business Management 40, 21-32. (2009) [CrossRef] [Google Scholar]
  8. Nyitrai, T., Virag, M., The effects of handling outliers on the performance of bankruptcy prediction models. Socio-economic Planning Sciences 67, 34-42. (2019) [CrossRef] [Google Scholar]
  9. Pernsteiner, H., Wagner, E., Kabat, L., et al., Doing business in new economic and social conditions. Bratislava: EUROKODEX. ISBN 978-80-89447-51-0. (2011) [Google Scholar]
  10. Pollak, H., How to restore the viability of declining businesses. 1st edition. Prague: C.H. Beck, ISBN 80-7179-803-7. (2003) [Google Scholar]
  11. Sadgrove, K., The Complete Guide to Business Risk Management. Burlington: Gower Publishing Company. ISBN 978-0566086618. (2005) [Google Scholar]
  12. Sedlacek, J., Accounting data in manager’s hands: financial analysis in company management. 2nd supplemented edition. Brno: Computer Press, ISBN 80-7226-562-8. (2001) [Google Scholar]
  13. Shumway, T., Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business 74, 101-124. (2001) [CrossRef] [Google Scholar]
  14. Synek, M., Kislingerova, E., Business economics 6th revised and supplemented edition. Prague: C.H. Beck, ISBN 978-807400-274-8. (2015) [Google Scholar]
  15. Valaskova, K., Kliestik, T., Kovacova, M., Management of financial risks in Slovak enterprises using regression analysis. Oeconomia Copernicana 9, 105–121. (2018) [CrossRef] [Google Scholar]
  16. Valaskova, K., Kramarova, K., Kollar, B., Theoretical aspects of a model of credit risk determination Credit Risk. Advances in Education Research 81, 400-406. (2015) [Google Scholar]
  17. Vochozka, M., Stehel, V., Rowland, Z., Krulicky, T. A review of the report on relation between the controlling and controlled party and between the controlled party and parties controlled by the same controlling party. Ad AltaJournal of Interdisciplinary Research 9, 321-325. (2019) [Google Scholar]
  18. Wu, Y., Gaunt, C., Gray, S., A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics. (2010) [Google Scholar]
  19. Zuzak, R., Konigova, M., Enterprise Crisis Management 2nd updated and expanded edition. Prague: Grada, Expert. ISBN 978-80-247-3156-8. (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.