Open Access
SHS Web Conf.
Volume 77, 2020
The 2nd ACM Chapter International Conference on Educational Technology, Language and Technical Communication (ETLTC2020)
Article Number 04003
Number of page(s) 2
Section Topics in Computer Science
Published online 08 May 2020
  1. D. Monroe, Neuromorphic computing gets ready for the (really) big time (Association for Computing Machinery (ACM), 2014), Vol. 57, pp. 13–15 [Google Scholar]
  2. T. Wunderlich, A.F. Kungl, E. Müller, A. Hartel, Y. Stradmann, S.A. Aamir, A. Grübl, A. Heimbrecht, K. Schreiber, D. Stöckel et al., Demonstrating Advantages of Neuromorphic Computation: A Pilot Study (2019), Vol. 13, p. 260, ISSN 1662-453X [Google Scholar]
  3. T.H. Vu, O.M. Ikechukwu, A. Ben Abdallah, Fault-Tolerant Spike Routing Algorithm and Architecture for Three Dimensional NoC-Based Neuromorphic Systems (2019), Vol. 7, pp. 90436–90452, ISSN 2169-3536 [Google Scholar]
  4. K.N. Dang, A. Ben Ahmed, X. Tran, Y. Okuyama, A. Ben Abdallah, A Comprehensive Reliability Assessment of Fault-Resilient Network-on-Chip Using Analytical Model (2017), Vol. 25, pp. 3099–3112 [Google Scholar]
  5. K.N. Dang, A.B. Ahmed, Y. Okuyama, B.A. Abderazek, Scalable design methodology and online algorithm for TSV-cluster defects recovery in highly reliable 3D-NoC systems (2017), pp. 1–1 [Google Scholar]
  6. K.N. Dang, M.C. Meyer, A.B. Ahmed, A.B. Abdallah, X. Tran, A non-blocking non-degrading multiple defects link testing method for 3D-Networks-on-Chip (2020), pp. 1–1 [Google Scholar]
  7. K.N. Dang, A.B. Ahmed, A.B. Abdallah, X. Tran, TSV-OCT: A Scalable Online Multiple-TSV Defects Localization for Real-Time 3-D-IC Systems (2019), Vol. 28, pp. 672–685 [Google Scholar]
  8. H.T. Vu, Y. Okuyama, A. Ben Abdallah, Analytical performance assessment and high-throughput low-latency spike routing algorithm for spiking neural network systems (2019), Vol. 75 [Google Scholar]
  9. Y. LeCun, Mnist database of handwritten digits, (2020-03-28) [Google Scholar]
  10. P.U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, M. Pfeiffer, Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing, in (IJCNN) (2015), pp. 1–8 [Google Scholar]
  11. M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, E. Beigne, Spiking Neural Networks Hardware Implementations and Challenges: A Survey (ACM, June 2019), Vol. 15, pp. 22:1–22:35, ISSN 1550-4832 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.