Open Access
Issue |
SHS Web Conf.
Volume 83, 2020
Current Problems of the Corporate Sector 2020
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 8 | |
Section | Economics, Management and Finance | |
DOI | https://doi.org/10.1051/shsconf/20208301017 | |
Published online | 30 October 2020 |
- Laščiak, A., Optimálne programovanie, Bratislava: Alfa, 1990, p. 597. [Google Scholar]
- Kamien, I. M., Schwartz, N. L., Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, 2 ed., Dover: Dover Publication, 2012, p. 400. [Google Scholar]
- Lincoln, B., Dynamic Programming and Time-Varying Delay Systems, Lund: Lund Institute of Technology, 2003, p. 150. [Google Scholar]
- Goga, M., Ekonomická dynamika, Bratislava: Iura Edition, 2011. [Google Scholar]
- Yu, H., Bai, S., Chen, D., Dong, Ch., Feng, X., “Application of optimal control to the dynamic advertising decisions for supply chain with multiple delays,„ Systems Science & Control Engineering, vol. 8, no. 1, pp. 141-152, 2020. [CrossRef] [Google Scholar]
- Berberich, J., Köhler, J., Allgöwer, F., Müller, M., “Dissipativity properties in constrained optimal control: A computational approach,” Automatica, no. 114, 2020. [Google Scholar]
- Zhang, J., Garcia Fracaro, S., Chmielewski, D.J., “Integrated Process Design and Control for Smart Grid Coordinated IGCC Power Plants Using Economic Linear Optimal Control,” Processes, pp. 288-, 2020. [Google Scholar]
- Dorfmann, R., “An Economic Interpretation of Optimal Control Theory,” The American Economic Review, no. 59, pp. 817-831, 1969. [Google Scholar]
- Fendek, M., Nelineárne optimalizačné modely a metódy, Bratislava: Ekonóm, 1998. [Google Scholar]
- Bernouli, J., “Problema novum ad cujus solutionem Mathematici invitantur,” Acta Eruditorum, no. 18, p. from 269, June 1696. [Google Scholar]
- Thiele, R., “Euler and the Calculus of Variations,” in Leonhard Euler: Life, Work and Legacy, Amsterdam, Elsevier, 2007, p. 249. [Google Scholar]
- Salmon, R., “Practical use of Hamilton’s principle,” Journal of Fluid Mechanics, no. 132, pp. 431-444, 1983. [CrossRef] [Google Scholar]
- Pingyuan, W., Ying, Ch., Jinqiao, D., “Hamiltonian systems with Lévy noise: Symplecticity, Hamilton’s principle and averaging principle,” Physica D: Nonlinear Phenomena, no. 398, pp. 69-83, November 2019. [Google Scholar]
- Steinboeck, A., Saxinger, M., Kugi, A., “Hamilton’s Principle for Material and Nonmaterial Control Volumes Using Lagrangian and Eulerian Description of Motion,” Applied Mechanics Reviews, vol. 71, no. 1, pp. 1-14, January 2019. [CrossRef] [Google Scholar]
- Jinkyu, J., Hyeonseok, L., Jinwon, S., “Extended framework of Hamilton’s principle applied to Duffing oscillation,” Applied Mathematics and Computation, no. 367, 15 February 2020. [Google Scholar]
- Feynman, R., Feynman’s Thesis — A New Approach to Quantum Theory, London: World Science Publishing, 2005, p. 144. [Google Scholar]
- Siburg, K. F., The Principle of Least Action in Geometry and Dynamics, New York: Springer Verlag Berlin Heidelberg, 2004, p. 130. [Google Scholar]
- Litvinov, V., “Topological Magnetoelectric Effect,” in Magnetism in Topological Insulators, Cham, Springer, 2020, pp. 79-89. [CrossRef] [Google Scholar]
- Roos, C. F., “A Dynamic Theory of Economics,” Journal of Political Economy, no. 35, pp. 632-656, 1927. [CrossRef] [Google Scholar]
- Evans, G. C., “The Dynamics of Monopoly,” American Mathematics Monthly, no. 31, pp. 77-83, February 1924. [CrossRef] [Google Scholar]
- Hotelling, H., “The Economics of Exhaustible Resources,” Journal of Political Economy, pp. 137-175, April 1931. [Google Scholar]
- Ramsey, F., “Mathematical Theory of Savings,” Economic Journal, vol. 38, no. 152, pp. 543-559, 1928. [CrossRef] [Google Scholar]
- Tintner, G., “Monopoly Over Time,” Econometrica, vol. 5, no. 2, pp. 160-170, 1937. [CrossRef] [Google Scholar]
- Sengupta, J. K., Fox, K. A., Optimization Techniques in Quantitative Economic Models, Amsterdam: North - Holland Publishing, 1975. [Google Scholar]
- Teng, J. T., Thompson, G. L., “Oligopoly Models for Optimal Advertising when Production Cost Obey a Learning Curve,” Management Science, no. 29, pp. 1087 - 1101, 1983. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.