Open Access
SHS Web Conf.
Volume 91, 2021
Innovative Economic Symposium 2020 – Stable Development in Unstable World (IES2020)
Article Number 01015
Number of page(s) 8
Section Stable Development in Unstable World
Published online 14 January 2021
  1. C. Alexander, Market Risk Analysis Vol. IV. Value-at-Risk Methods, (2008). [Google Scholar]
  2. D. Markechova, A. Tirpakova & B. Stehlikova, Basics of statistics for teachers. UKF in Nitra, pp. 405, ISBN 978-80-8094-899-3, (2011). [Google Scholar]
  3. E. Ostertagova, Applied statistic. Elfa, Kosice, pp. 161, ISBN 978-80-8086-171-1, (2011). [Google Scholar]
  4. E. Ostertagova, Applied statistics in the computer environment of MATLAB. Equlibria, Kosice, pp. 193, ISBN 978-80-8143-006-0 (2012). [Google Scholar]
  5. G. Holton, Value-at-Risk: Theory and Practice, Academic Press, New York, (2003). [Google Scholar]
  6. J.P. Morgan, RiskMetrics Technical document, Reuters, New York, (1996). [Google Scholar]
  7. J. Vrbka, E. Nica, I. Podhorska, The application of Kohonen networks for identification of leaders in the trade sector in Czechia. Equilibrium. Quarterly Journal of Economics and Economic Policy, 14(4), 739-761 (2019). [Google Scholar]
  8. L. Svabova, M. Durica, A closer view of the statistical methods globally used in bankruptcy prediction of companies. Proceedings of the 16th International Scientific Conference on Globalization and its Socio-Economic Consequences, pp. 2174-2181 (2016). [Google Scholar]
  9. M. Kovacova, T. Kliestik, K. Valaskova, P. Durana, Z. Juhaszova, Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772 (2019). [CrossRef] [Google Scholar]
  10. P. Durana, K. Valaskova, D. Chlebikova, V. Krastev, I. Atanasova, Heads and tails of earnings management: quantitative analysis in emerging countries. Risks, 8(2), 57 (2020). [CrossRef] [Google Scholar]
  11. P. Kral, H. Musa, G. Lazaroiu, M. Misankova, J. Vrbka, Comprehensive assessment of the selected indicators of financial analysis in the context of failing companies. Journal of International Studies, 11(4), 282-294 (2018). [CrossRef] [Google Scholar]
  12. P. Kral, V. Valjaskova, K. Janoskova, Quantitative approach to project portfolio management: proposal for Slovak companies. Oeconomia Copernicana, 10(4), 797-814 (2019). [CrossRef] [Google Scholar]
  13. P. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, 2nd ed., McGraw-Hill Trade, New York, (2001). [Google Scholar]
  14. S. Kot, I. Rajiani, Testing and identifying variable dependency through the fisher exact test in central Europe enterprises. Ekonomicko-manazerske spektrum, 14(1), 10-18 (2020). [CrossRef] [Google Scholar]
  15. T. Kliestik, M. Misankova, K. Valaskova, L. Svabova, Bankruptcy prevention: new effort to reflect on legal and social changes. Science and Engineering Ethics, 24(2), 791-803 (2018). [Google Scholar]
  16. T. Kliestik, K. Valaskova, G. Lazaroiu, M. Kovacova, J. Vrbka, Remaining financially healthy and competitive: the role of financial predictors. Journal of Competitiveness, 12(1), 74 (2020). [CrossRef] [Google Scholar]
  17. B.Y. Lemeshko, Chi-Square-Type Tests for Verification of Normality, Measurment Techniques, 58(6), 581-591 (2015). [Google Scholar]
  18. Z.J Zhou, Z.Y Ho, J.H. Liu, T.J. Tong, Hypothesis testing for normal distributions: a unified framework and new developments, Statistics and Its Interference, 13(2), 167-179 (2020). [Google Scholar]
  19. A.K. Bera, A.F. Galvao, L. Wang, Z.J. Xiao, A new characterization of the normal distribution and test for normality, Econometric Theory, 32(5), 1216-1252 (2016). Garcia-Perez, Chi-square tests under models close to the normal distribution, Metrika, 63(3), 343-354 (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.