Open Access
Issue
SHS Web Conf.
Volume 91, 2021
Innovative Economic Symposium 2020 – Stable Development in Unstable World (IES2020)
Article Number 01046
Number of page(s) 11
Section Stable Development in Unstable World
DOI https://doi.org/10.1051/shsconf/20219101046
Published online 14 January 2021
  1. E. Stoye, ‘No one is allowed to go out’: your stories from the coronavirus outbreak. Nature, 578, 499-499 (2020). [CrossRef] [Google Scholar]
  2. T. Kliestik, K. Valskova, G. Lazaroiu, M. Kovacova, J. Vrbka, Remaining financially healthy and competitive: The role of financial predictors. Journal of Competitiveness, 12(1), 74-92 (2020). [CrossRef] [Google Scholar]
  3. M. Kovacova, T. Kliestik, K. Valaskova, P. Durana, Z. Juhaszova, Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772 (2019). [CrossRef] [Google Scholar]
  4. T. Kliestik, J. Vrbka, Z. Rowland, Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium-Quarterly Journal of Economics and Economic Policy, 13(3), 569-593 (2018). [Google Scholar]
  5. M. Vochozka, J. Horak, T. Krulicky, Innovations in management forecast: Time development of stock prices with neural networks. Marketing and Management of Innovations, 2020(2), 324-339 (2020). [CrossRef] [Google Scholar]
  6. P. Suler, J. Horak, T. Krulicky, Validation of the prediction of ČEZ stock prices. Littera Scripta, 13(1), 194-210 (2020). [CrossRef] [Google Scholar]
  7. J. Vrbka, Z. Rowland, Stock price development forecasting using neural networks. SHS Web of Conferences - Innovative Economic Symposium 2017: Strategic Partnership in International Trade (2017). [Google Scholar]
  8. B. Groda, J. Vrbka, Prediction of stock price developments using the Box-Jenkins method. SHS Web of Conferences - Innovative Economic Symposium 2017: Strategic Partnership in International Trade (2017). [Google Scholar]
  9. M. Vochozka, J. Horak, P. Suler, Equalizing seasonal time series using artificial neural networks in predicting the Euro-Yuan exchange rate. Journal of Risk and Financial Management, 12(2), (2019). [Google Scholar]
  10. J. Horak, T. Krulicky, Comparison of exponential time series alignment and time series alignment using artificial neural networks by example of prediction of future development of stock prices of a specific company. SHS Web of Conferences: Innovative Economic Symposium 2018 - Milestones and Trends of World Economy (IES2018) (2019). [Google Scholar]
  11. J. Vrbka, Z. Rowland, P. Suler, Comparison of neural networks and regression time series in estimating the development of the EU and the PRC trade balance. SHS Web of Conferences: Innovative Economic Symposium 2018 - Milestones and Trends of World Economy (IES2018) (2019). [Google Scholar]
  12. A. Picasso, S. Merello, Y.K. Ma, L. Oneto, E. Cambria, Technical analysis and sentiment embeddings for market trend prediction. Expert Systems with Applications, 135, 60-70 (2019). [CrossRef] [Google Scholar]
  13. A.P. Ratto, S. Merello, L. Oneto, Y.K. Ma, L. Malandri, E. Cambria, Ensemble of technical analysis and machine learning for market trend prediction. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 3, 2090-2096 (2018). [CrossRef] [Google Scholar]
  14. D.P. Gandhmal, K. Kumar, Systematic analysis and review of stock market prediction techniques. Computer Science Review, 34 (2019). [Google Scholar]
  15. D. Shah, H. Isah, F. Zulkernine, Stock market analysis: A review and taxonomy of prediction techniques. International Journal of Financial Studies, 7 (2019). [Google Scholar]
  16. B. Weng, L. Lu, X. Wang, F.M. Megahed, W. Martinez, Predicting short-term stock prices using ensemble methods and online data sources. Expert Systems with Applications, 112, 258-273 (2018). [CrossRef] [Google Scholar]
  17. G. Kumar, S. Jain, U.P. Singh, Stock market forecasting using computational intelligence: A survey. Archives of Computational Methods in Engineering, (2020). [Google Scholar]
  18. M.P. Naeini, H. Taremian, H.B. Hashemi, Stock market value prediction using neural networks. 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), 132-136 (2010). [CrossRef] [Google Scholar]
  19. W. Wang, W. Li, N. Zhang, K. Liu, Portfolio formation with preselection using deep learning from long-term financial data. Expert Systems with Applications, 143 (2020). [Google Scholar]
  20. V. Zakamulin, J. Giner, Trend Following with Momentum Versus Moving Average: A Tale of Differences. SSRN Electronic Journal (2018). [Google Scholar]
  21. P. Marek, B. Sediva, Optimization and testing of RSI. 11th International Scientific Conference on Financial Management of Firms and Financial Institutions, (2017). [Google Scholar]
  22. M. Culik, Financial management of firms and financial institutions. 11th International Scientific Conference on Financial Management of Firms and Financial Institutions, 319 (2017). [Google Scholar]
  23. Y. Wan, Y.W. Si, A formal approach to chart patterns classification in financial time series. Information Sciences, 411, 151-175 (2017). [CrossRef] [Google Scholar]
  24. S. Thammakesorn, O. Sornil, Generating trading strategies based on candlestick chart pattern characteristics. Journal of Physics: Conference Series, 2018 11th International Conference on Computer and Electrical Engineering, 1195 (2018). [Google Scholar]
  25. R. Naranjo, M. Santos, Advances in intelligent systems and computing. Springer Verlag, 527, 323-333 (2017). [CrossRef] [Google Scholar]
  26. K. Li, P. Mohanram, Fundamental analysis: Combining the search for quality with the search for value. Contemporary Accounting Research, 36, 1263-1298 (2019). [CrossRef] [Google Scholar]
  27. K.S.K. Lam, L. Dong, B. Yu, Value premium and technical analysis: Evidence from the China stock market. Economies, 7 (2019). [Google Scholar]
  28. J.N. Wang, H.C. Liu, J. Du, Y.T. Hsu, Economic benefits of technical analysis in portfolio management: Evidence from global stock markets. International Journal of Finance and Economics, 24, 890-902 (2019). [CrossRef] [Google Scholar]
  29. Yahoo! finance [online], Available at: https://finance.yahoo.com/ (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.