Open Access
Issue
SHS Web of Conf.
Volume 92, 2021
The 20th International Scientific Conference Globalization and its Socio-Economic Consequences 2020
Article Number 01011
Number of page(s) 9
Section Global Impact of COVID 19 on Economy and Society
DOI https://doi.org/10.1051/shsconf/20219201011
Published online 13 January 2021
  1. Akan, H., Gurol, Y., Izbirak, G., Ozdatlı, S., Yilmaz, G., Vitrinel, A., Hayran, O. (2010). Knowledge and attitudes of university students toward pandemic influenza: A cross-sectional study from Turkey. BMC Public Health, 10(1), Art. No. 413. [CrossRef] [Google Scholar]
  2. Clay, R.A. (2020, April 15). Advice for treating and preventing substance use during COVID-19. American Psychological Association. Retrieved from: https://www.apa.org/topics/covid-19/substance-use [Google Scholar]
  3. Provenzani, A., Polidori, P. (2020). Covid-19 and drug therapy, what we learned. International Journal of Clinical Pharmacy, 42, 833-836. [CrossRef] [Google Scholar]
  4. Morens, D., Fauci, A. (2007). The 1918 Influenza Pandemic: Insights for the 21st Century. The Journal of Infectious Diseases, 195(7), 1018-1028. [CrossRef] [Google Scholar]
  5. Simonds, A.K., Sokol, D.K. (2009). Lives on the line? Ethics and practicalities of duty of care in pandemics and disasters. European Respiratory Journal, 34(2), 303-309. [CrossRef] [Google Scholar]
  6. De Luca, G., Shirvani Dastgerdi, A., Francini, C., Liberatore, G. (2020). Sustainable Cultural Heritage Planning and Management of Overtourism in Art Cities: Lessons from Atlas World Heritage. Sustainability, 12, Art. No. 3929. [Google Scholar]
  7. Schlipköter, U., Flahault, A. (2010). Communicable diseases: achievements and challenges for public health. Public Health Reviews, 32, 90-119. [CrossRef] [Google Scholar]
  8. Van der Kooi, A.L.F., Stronks, K., Thompson, C.A., DerSarkissian, M., Arah, O.A. (2013). The modifying influence of country development on the effect of individual educational attainment on self-rated health. American Journal of Public Health, 103, 49-54. [CrossRef] [Google Scholar]
  9. Rehkopf, D.H., Dow, W.H., Rosero-Bixby, L. (2010). Differences in the association of cardiovascular risk factors with education: a comparison of Costa Rica (CRELES) and the USA (NHANES). Journal of Epidemiology and Community Health, 64, 821-828. [CrossRef] [Google Scholar]
  10. Kucharski, A.J., Edmunds, W.J. (2015). Characterizing the transmission potential of zoonotic infections from minor outbreaks. PLoS Computational Biology, 11(4), Aer. No. 1004154. [CrossRef] [Google Scholar]
  11. Liu, W., Tang, S., Xiao, Y. (2015). Model selection and evaluation based on emerging infectious disease data sets including A/H1N1 and Ebola. Computational and Mathematical Methods in Medicine, 2015, Art. No. 207105. [Google Scholar]
  12. Poletto, C., Pelat, C., Levy-Bruhl, D., Yazdanpanah, Y., Boelle, P.Y., Colizza, V. (2014). Assessment of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic in the Middle East and risk of international spread using a novel maximum likelihood analysis approach. Eurosurveillance, 19(23), Art. No. 20824. [Google Scholar]
  13. Breban, R., Riou, J., Fontanet, A. (2013). Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet, 382, 694-699. [CrossRef] [Google Scholar]
  14. Cauchemez, S., Fraser C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Enouf, V., Van der Werf, S., Ferguson, N.M. (2014). Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. The Lancet Infectious Diseases, 14, 50-56. [CrossRef] [Google Scholar]
  15. Chowell, G., Blumberg, S., Simonsen, L., Millera, M.A., Viboud, C. (2014). Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics, 9, 40-51. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.