Open Access
Issue
SHS Web of Conf.
Volume 92, 2021
The 20th International Scientific Conference Globalization and its Socio-Economic Consequences 2020
Article Number 01052
Number of page(s) 7
Section Global Impact of COVID 19 on Economy and Society
DOI https://doi.org/10.1051/shsconf/20219201052
Published online 13 January 2021
  1. Whiley, H., Keerthirathne, T.P., Nisar, M.A., White, M.A., Ross, K.E. (2020). Viral Filtration Efficiency of Fabric Masks Compared with Surgical and N95 Masks. Pathogens, 9(9), 762. [CrossRef] [Google Scholar]
  2. Klepek, M., Matusinska, K. (2016). Czech Singles in the Market of Services. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 64(5), 1731-1738. [CrossRef] [Google Scholar]
  3. Simakova, J., Stavarek, D., Prazak, T., Ligocka, M. (2019). Macroeconomic Factors and Stock Prices in the Food and Drink Industry. British Food Journal, 121(7), 1627-1641. [CrossRef] [Google Scholar]
  4. Valaskova, K., Durana, P., Adamko, P., Jaros, J. (2020). Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities. Journal of Risk and Financial Management, 13(5), 92. [CrossRef] [Google Scholar]
  5. Hussain, H.I., Kot, S., Kamarudin, F., Wong, C.M. (2020). The Nexus of Competition Freedom and the Efficiency of Microfinance Institutions. Journal of Competitiveness, 12(2), 67-89. [CrossRef] [Google Scholar]
  6. Prazak, T., Stavarek, D. (2018). The Importance of Financial Ratios in Predicting Stock Price Trends: Evidence from Central European Countries. International Journal of Trade and Global Markets, 11(4), 293-305. [CrossRef] [Google Scholar]
  7. Barnes, S. J. (2020). Information management research and practice in the post-COVID-19 world. International Journal of Information Management, 55, Art. No. 102175. [CrossRef] [Google Scholar]
  8. Sanusi, K.A., Meyer, D., Ślusarczyk, B. (2017). The relationship between changes in inflation and financial development. Polish Journal of Management Studies, 16(2). 253-265. [CrossRef] [Google Scholar]
  9. Goldsmith, R.E., Foxall, G.R. (2003). The measurement of innovativeness. The international handbook on innovation, 321-330. [CrossRef] [Google Scholar]
  10. Sohaib, O., Kang, K. (2015a). Individual level culture influence on online consumer iTrust aspects towards purchase intention across cultures: A SOR model. International Journal of Electronic Business, 12(2), 142-161. [CrossRef] [Google Scholar]
  11. Ludbrook, F., Michalikova, K.F., Musova, Z., Suler, P. (2019). Business models for sustainable innovation in industry 4.0: Smart manufacturing processes, digitalization of production systems, and data-driven decision making. Journal of Self-Governance and Management Economics, 7(3), 21-26. [Google Scholar]
  12. Zygmunt, A. (2019). External linkages and intellectual assets as indicators of firms’ innovation activities: results from the Czech Republic and Poland. Oeconomia Copernicana, 10(2), 291-308. [CrossRef] [Google Scholar]
  13. Janoskova, K., Kral, P. (2015). Optimal timing of innovation as a precondition of successful innovation on the global market. In T. Kliestik (Ed.). Globalization and Its Socio-Economic Consequences (pp. 254-259). University of Zilina: Slovakia. [Google Scholar]
  14. Janoskova, K., Kral, P. (2016). Acceptance of Risk of Innovations as an Important Assumption of Innovative Organization. In H. Zhang (Ed.) International Conference on Information, Communication and Social Sciences (ISSGBM-ICS 2016) (pp. 3-7). Singapore: Singapore. [Google Scholar]
  15. Sohaib, O., Kang, K. (2015b). AIS Electronic Library (AISeL). [Google Scholar]
  16. Eysenck, G., Kovalova, E., Machova, V., Konecny, V. (2019). Big data analytics processes in industrial internet of things systems: Sensing and computing technologies, machine learning techniques, and autonomous decision-making algorithms. Journal of Self-Governance and Management Economics, 7(4), 28-34. [CrossRef] [Google Scholar]
  17. Van Thanh, D.O. (2000). Security issues in mobile ecommerce. In Proceedings 11th International Workshop on Database and Expert Systems Applications, 1875, 412-425. [CrossRef] [Google Scholar]
  18. Wei, K.K., Sia, C.L., Teo, H.H., Liu, C. (2008). The impact of institutional forces on B2B ecommerce diffusion. Information management in the modern organizations: trends & solutions, 1-2, 289-389. [Google Scholar]
  19. Ha, H.Y., John, J., John, J.D., Chung, Y.K. (2016). Temporal effects of information from social networks on online behavior. Internet Research, 26(1), 213-235. [CrossRef] [Google Scholar]
  20. Faiola, A., Matei, S. (2007). Cultural Cognitive Style and the Web: Toward a Theory and Practice of Web Design for International Users. In Linguistic and Cultural Online Communication Issues in the Global Age (pp. 143-159). IGI Global. [CrossRef] [Google Scholar]
  21. Sabiote, C. M., Frías, D. M., Castañeda, J. A. (2012). E‐service Quality as Antecedent to E‐satisfaction. Online Information Review, 36(2), 157-174. [CrossRef] [Google Scholar]
  22. Dobre, C., Dragomir, A., Preda, G. (2009). Consumer Innovativeness: A Marketing Approach. Management & Marketing, 4(2), 19-34. [Google Scholar]
  23. Sohaib, O., Kang, K., Miliszewska, I. (2019). Uncertainty avoidance and consumer cognitive innovativeness in e-commerce. Journal of Global Information Management (JGIM), 27(2), 59-77. [CrossRef] [Google Scholar]
  24. Bauerova, R., Klepek, M. (2018). Technology acceptance as a determinant of online grocery shopping adoption. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(3), 737-746. [CrossRef] [Google Scholar]
  25. Xiao, L., Zhang, Y. (2020). An analysis on the policy evolution of cross-border ecommerce industry in China from the perspective of sustainability. Electronic Commerce Research, 1-25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.