Open Access
SHS Web of Conf.
Volume 92, 2021
The 20th International Scientific Conference Globalization and its Socio-Economic Consequences 2020
Article Number 03030
Number of page(s) 7
Section Financial Management and Financial Markets
Published online 13 January 2021
  1. Ashander, L., Kliestikova, J., Durana, P., Vrbka, J. (2019). The Decision-Making Logic of Big Data Algorithmic Analytics, Contemporary Readings in Law and Social Justice, 11(1), 57–62. [CrossRef] [Google Scholar]
  2. Podhorska, I., Siekelova, A., Olah, J. (2019). Earnings Analysis of SMEs: A Case Study in Slovakia. In K.S.Soliman (Ed.). Proceedings of the 33rd International-Business-Information-Management-Association (pp. 8706-8718). Norristown: USA. [Google Scholar]
  3. Whittle, T., Gregova, E., Pohorska, I., Rowland, Z. (2019). Smart Manufacturing Technologies: Data-driven Algorithms in Production Planning, Sustainable Value Creation, and Operational Performance Improvement. Economics, Management, and Financial Markets, 14(2), 52-57. [CrossRef] [Google Scholar]
  4. Sarkisyan, I. (2007). History of trade. Retrieved from: [Google Scholar]
  5. Vesela, J. (2011). Investing in capital markets. 2nd, updated edition. Prague: Wolters Kluwer Czech Republic. [Google Scholar]
  6. Pavlat, V. (2003). Stock exchanges. 1st edition, Prague: University of Finance and Administration. [Google Scholar]
  7. Musilek, P. (2011). Stock markets. 2., update and expand edition, Prague: Ekopress. [Google Scholar]
  8. Rejnus, O. (2008), Financial markets. 1st edition. Ostrava: Key Publishing. [Google Scholar]
  9. Hadas-Dyduch, M. (2019). China – Globalization world empirical analysis of connections, Ekonomicko-manazerske spektrum, 13(2), 81-88. [CrossRef] [Google Scholar]
  10. Heckova, J. (2008). The current state of Slovak industry and the prospects for its further development. Presov: Approved by the editorial board of the Faculty of Management of the University of Presov. [Google Scholar]
  11. Douglas, M. (2010). Trading in the zone. 1. Edition. Teclice: IMPOSSIBLE s.r.o. [Google Scholar]
  12. Chavarnakul, T., Enke, Ch. (2009), A literature review of technical analysis on stock markets. The Quarterly Review of Economics and Finance, 66, 115-126. [Google Scholar]
  13. Teiceira, L.A., Oliviera, A.L.I.D. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert Systems with Applications, 37(10), 6885-6890. [CrossRef] [Google Scholar]
  14. Oppenheimer, H.R., Schlarbaum, G.G. (1981). Investing with Ben Graham: An Ex Ante test of the efficient markets hypothesis. The Journal of Financial and Quantitative Analysis, 16(3), 341-360. [CrossRef] [Google Scholar]
  15. Metgalchi, M., Chang, Y.H., Marcucci, J. (2008), Is the Swedish stock market efficient? Evidence from some simple trading rules. International Review of Financial Analysis, 17(3), 475-490. [CrossRef] [Google Scholar]
  16. Cowles, A. (1933). Can stock market forecasters forecast? Econometrica, 1(3), 309-324. [CrossRef] [Google Scholar]
  17. Northcott, A. (2009). The complete guide to using candlestick charting: How to earn high rates of return-safely. Atlantic Publishing Group, Inc. [Google Scholar]
  18. Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., Juhaszova, Z. (2019). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772. [CrossRef] [Google Scholar]
  19. Turek, L. (2011), Technical Analysis Manual 1 edition, Prague: CZECHWEALTH, s.r.o. [Google Scholar]
  20. Siekelova, A., Podhorska, I. (2020). Earnings Indicators under the Condition of Globalization. SHS Web of Conferences,74, Art. No. 01031. [Google Scholar]
  21. Svabova, L., Durica, M. (2016). A closer view of the statistical methods globally used in bankruptcy prediction of companies. In T. Kliestik (Ed.). Proceedings of the 16th international scientific conference on globalization and its socioeconomic consequences (2174-2181). University of Zilina: Slovakia. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.