Open Access
SHS Web of Conf.
Volume 92, 2021
The 20th International Scientific Conference Globalization and its Socio-Economic Consequences 2020
Article Number 04022
Number of page(s) 9
Section Innovation and Investment on Industry 4.0
Published online 13 January 2021
  1. Vavrova, K. (2015). Tax incentives of business entities in selected countries of the EU in the context of globalization. In: Kliestik, T. (Eds.), Globalization and its socio-economic consequences (pp. 855-863). Rajecke Teplice: Proceedings Paper. [Google Scholar]
  2. Szabo, L., Cambalikova, A. (2017). Moderné trendy v manažmente a ich uplatňovanie v podnikoch na Slovensku, Brno: Tribun EU. [Google Scholar]
  3. Mala, D., Sedliacikova, M., Kascakova, A., Bencikova, D., Vavrova, K., Bikar, M. (2017). Green logistic in Slovak small and medium wood-processing enterprises. Bioresources, 12(3), 5155-5173. [CrossRef] [Google Scholar]
  4. Cambalikova, A., Szabo, L. (2017). Modern trends in management and their application in controlling. In Socio-economic perspectives in the age of XXI century globalization (pp. 475-488). Tirana : Proceedings Paper. [Google Scholar]
  5. Bolek, V., Kokles, M., Romanova, A., Zelina, M. (2018). Information Literacy of Managers: Models and Factors. Journal of Business Economics and Management, 19(5), 722-741. [CrossRef] [Google Scholar]
  6. Ahson, S., Ilyas, M. (2008). RFID Handbook: Applications, Technology, Security, and Privacy. Boca Raton: CRC Press. [Google Scholar]
  7. Su, J., et al. (2019). Energy Efficient Tag Identification Algorithms For RFID: Survey, Motivation And New Design. IEEE Wireless Communications, 26(3), 118–124. [CrossRef] [Google Scholar]
  8. Reaz, M. B. I. (2013). Radio frequency identification from system to applications. Rijeka: InTech. [CrossRef] [Google Scholar]
  9. Crandall, R. E, Crandall, W. (2015). How Management Programs Can Improve Performance : Selecting and Implementing the Best Program for Your Organization. Charlotte, North Carolina : Information Age Publishing, Inc. [Google Scholar]
  10. Zhong, R. Y., Huang, G.Q., Lan, S.L., Dai, Q.Y., Xu, C., Zhang, T. (2015). A Big Data Approach for Logistics Trajectory Discovery from RFID-Enabled Production Data. International Journal of Production Economics, 165, 260–272. [CrossRef] [Google Scholar]
  11. Gope, P., Amin, R., Islam, S.K.H., Kumar, N., Bhalla, V.K. (2018). Lightweight and Privacy-Preserving RFID Authentication Scheme for Distributed IoT Infrastructure with Secure Localization Services for Smart City Environment. Future Generation Computer Systems, 83, 629–637. [CrossRef] [Google Scholar]
  12. Brooks, J. R., et al. (2019). Revisiting Quick Response (QR) Code Technology: Corporate Perspectives. International Journal of Mobile Communications, 17(1). [CrossRef] [Google Scholar]
  13. Shettar, I. M. (2016). Quick Response (QR) Codes in Libraries: Case study on the use of QR codes in the Central Library, NITK. In Proc. TIFR-BOSLA National Conference on Future Librarianship. 129-134. [Google Scholar]
  14. Bashir, I., Naik, K., Madhavaiah, C. (2013). Potential Business Applications of Quick Response (QR) Codes. Prajnan, XLI(4). [Google Scholar]
  15. Wani, S. (2019). Quick Response Code : A New Trend in Digital Library. International Journal of Library and Information Studies, 9(1). [Google Scholar]
  16. Choi, T.M., Sethi, S. (2010). Innovative Quick Response Programs: A Review. International Journal of Production Economics, 127(1), 1-12. [CrossRef] [Google Scholar]
  17. Jeon, S. et al. (2010). Localization of pallets based on passive RFID tags. In International Conference on Information Technology. 834–839. [Google Scholar]
  18. Shen, J., Tan, H.W., Wang, J., Wang, J.W., Lee, S. (2015). A novel routing protocol providing good transmission reliability in underwater sensor networks. Journal of Internet Technology, 16(1), 171–178. [Google Scholar]
  19. He, Z. et al. (2010). Feature-to-feature based laser scan matching for pallet recognition. In International Conference on Measuring Technology and Mechatronics Automation: 2010, 260–263. [CrossRef] [Google Scholar]
  20. Lecking, D., Wulf, O., Wagner, B. (2006). Variable pallet pick-up for automatic guided vehicles in industrial environments. In IEEE Conference on Emerging Technologies and Factory Automation: 2006 (pp. 1169–1174). Prague: IEEE International Conference on Emerging Technologies and Factory Automation-ETFA. [Google Scholar]
  21. de Vries, J., de Koster, R., Stam, D. (2015). Exploring the Role of Picker Personality in Predicting Picking Performance with Pick by Voice, Pick to Light and RF-Terminal Picking. International Journal of Production Research, 54(8), 2260–2274. [CrossRef] [Google Scholar]
  22. Bächler, A., Bächler, L., Autenrieth, S., Kurtz, P., Hörz, T., Heidenreich, T., Krüll, G. (2016). A Comparative Study of an Assistance System for Manual Order Picking -- Called Pick-by-Projection -- with the Guiding Systems Pick-by-Paper, Pick-by-Light and Pick-by-Display. In Bui, T.X., Sprague, R.H. (Eds.), 49th Hawaii International Conference on System Sciences (HICSS) (pp. 523-531). Koloa : Proceedings of the Annual Hawaii International Conference on System Sciences. [CrossRef] [Google Scholar]
  23. Dujmesic, N., Bajor, I., Rozic, T., (2018). Warehouse Processes Improvement by Pick by Voice Technology. Tehnicki Vjesnik - Technical Gazette, 25(4). [Google Scholar]
  24. Cambalikova, A. (2018). Moderné manažérske metódy uplatňované v kontrole. In Trendy interného kontrolovania v podnikateľských subjektoch vo svetle nových výziev: [recenzovaný zborník vedeckých statí] (pp. 88-96). Ceske Budejovice : Proceedings Paper. [Google Scholar]
  25. Porubanova, K., Puckova, N. (2019). Optimalizácia podnikových procesov využitím analýzy hodnotových tokov. Ekonomika, financie a manažment podniku XIII: zborník vedeckých statí pri príležitosti Týždňa vedy a techniky (pp. 431-440). Bratislava : Ekonom. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.