Open Access
SHS Web of Conf.
Volume 92, 2021
The 20th International Scientific Conference Globalization and its Socio-Economic Consequences 2020
Article Number 05012
Number of page(s) 10
Section Collaborative Economics, Digital Platforms and Multimedia
Published online 13 January 2021
  1. Giourka, P., Sanders, M.W.J.L., Angelakoglou, K., Pramangioulis, D., Nikolopoulos, N., Rakopoulos, D., Tryferidis, A., Tzovaras, D. (2019). The Smart City Business Model Canvas – A Smart City Business Modeling Framework and Practical Tool. Energies, 12(24), 4798. [CrossRef] [Google Scholar]
  2. Chaturvedi, K., Matheus, A., Nguyen, S.H., Kolbe, T.H. (2019). Securing Spatial Data Infrastructures for Distributed Smart City applications and services. Future Generation Computer Systems, 101, 723-736. [CrossRef] [Google Scholar]
  3. Attoh, K., Wells, K., Cullen, D. (2019). “We’re building their data”: Labor, alienation, and idiocy in the smart city. Environment and Planning D-Society & Space, 37(6), 1007-1024. [CrossRef] [Google Scholar]
  4. Husar, M., Ondrejicka, V. (2019) Social Innovations in Smart Cities – Case of Poprad. Mobile Networks & Applications, 24(6), 2043-2049. [CrossRef] [Google Scholar]
  5. Derickson, K., Oswin, N., Vasudevan, A. (2019). Society and Space editorial team changes. Environment and Planning D: Society and Space, 37(1), 3-5. [CrossRef] [Google Scholar]
  6. Gandy, O.H. Jr., Nemorin, S. (2018). Toward a political economy of nudge: smart city variations. Information, Communication & Society, 22(14), 2112-2126. [CrossRef] [Google Scholar]
  7. Reddy Kummitha, R.K. (2019). Smart cities and entrepreneurship: An agenda for future research. Technological Forecasting and Social Change, 149, 119763. [CrossRef] [Google Scholar]
  8. Abu Bakar, N., Selamat, A., Krejcar, O. (2019) Improving Agent Quality in Dynamic Smart Cities by Implementing an Agent Quality Management Framework. Applied Sciences – Basel, 9(23), 5111. [Google Scholar]
  9. Lau, B. P. L., Marakkalage, S. H., Zhou, Y. R., Ul Hassan, N., Yuen, C., Zhang, M., Tan, U. X. (2019). A survey of data fusion in smart city applications. Information Fusion, 52, 357-374. [CrossRef] [Google Scholar]
  10. Sáncheza A.J., Rodríguezb, S. Prietab, F. González, A. (2019). Adaptive interface ecosystems in smart cities control systems. Future Generation Computer Systems – The international journal of escience, 101, 605-620. [CrossRef] [Google Scholar]
  11. Pribyl, O., Pribyl, P., Lom, M., Svitek, M. (2019). Modeling of Smart Cities Based on ITS Architecture. IEEE Intelligent Transportation Systems Magazine, 11(4), 28-36. [CrossRef] [Google Scholar]
  12. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22-32. [CrossRef] [Google Scholar]
  13. Lauzi M. (2019). Smart City: Technische Fundamente und erfolgreiche Anwendungen. Carl Hanser Verlag GmbH & Co. [Google Scholar]
  14. Townsend E. (2019). Smart cities: big data, civilian hackers and the search for a new utopia. Moscow: Publishing house of the Institute of Gaidar. [Google Scholar]
  15. Karaca Y., Bayrak Ş., Yetkin E.F. (2017) The Classification of Turkish Economic Growth by Artificial Neural Network Algorithms. In Gervasi O. et al. (Eds.), Proceedings of Computational Science and Its Applications – ICCSA 2017 (pp. 115-126). Cham: Springer. [CrossRef] [Google Scholar]
  16. Bawa, M., Caganova D., Szilva, I., Spirkova, D. (2016). Importance of Internet of Things and Big Data in Building Smart City and What Would Be Its Challenges. In A. Leon-Garcia et al. (Eds.), International Summit, Smart City 360° (pp. 605-616). ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.