Open Access
Issue
SHS Web Conf.
Volume 95, 2021
The 3rd International Conference on Resources Economics and Bioeconomy in Competitive Societies (RebCos’20) under the title Environmental Challenges, Innovative Technologies and Rural Areas in Digital Era
Article Number 01010
Number of page(s) 9
DOI https://doi.org/10.1051/shsconf/20219501010
Published online 03 February 2021
  1. World Health Organization Regional Office for Europe. (2015). Improving environment and health in Europe: how far have we gotten? http://www.euro.who.int/__data/assets/pdf_file/0018/276102/Improving-environment-health-europe-en.pdf?ua=1 [Google Scholar]
  2. Fischer, E. M., & Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5(6), 560–564. https://doi.org/10.1038/nclimate2617 [CrossRef] [Google Scholar]
  3. Lehmann, J., Coumou, D., & Frieler, K. (2015). Increased record-breaking precipitation events under global warming. Climatic Change, 132(4), 501–515. https://doi.org/10.1007/s10584-015-1434-y [CrossRef] [Google Scholar]
  4. Christidis, N., Jones, G. S., & Stott, P. A. (2015). Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nature Climate Change, 5(1), 46–50. https://doi.org/10.1038/nclimate2468 [CrossRef] [Google Scholar]
  5. McMichael, A. J. (2013). Globalization, Climate Change, and Human Health. New England Journal of Medicine, 368(14), 1335–1343. https://doi.org/10.1056/NEJMra1109341 [CrossRef] [Google Scholar]
  6. Lindgren, E., Andersson, Y., Suk, J. E., Sudre, B., & Semenza, J. C. (2012). Monitoring EU Emerging Infectious Disease Risk Due to Climate Change. Science, 336(6080), 418–419. https://doi.org/10.1126/science.1215735 [CrossRef] [PubMed] [Google Scholar]
  7. Suk, J., Ebi, K., Vose, D., Wint, W., Alexander, N., Mintiens, K., & Semenza, J. (2014). Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change. International Journal of Environmental Research and Public Health, 11(2), 2218–2235. https://doi.org/10.3390/ijerph110202218 [CrossRef] [Google Scholar]
  8. Semenza, J. C., Suk, J. E., Estevez, V., Ebi, K. L., & Lindgren, E. (2012). Mapping climate change vulnerabilities to infectious diseases in Europe. Environmental Health Perspectives, 120(3), 385–392. https://doi.org/10.1289/ehp.1103805 [CrossRef] [Google Scholar]
  9. European Environment Agency. (2017). Climate change, impacts and vulnerability in Europe 2016. An indicator-based report. https://doi.org/10.2800/534806 [Google Scholar]
  10. Nichols, G., Lane, C., Asgari, N., Verlander, N. Q., & Charlett, A. (2009). Rainfall and outbreaks of drinking water related disease and in England and Wales. Journal of Water and Health, 7(1), 1–8. https://doi.org/10.2166/wh.2009.143 [CrossRef] [PubMed] [Google Scholar]
  11. Craig, D. L., Fallowfield, H. J., & Cromar, N. J. (2003). Effectiveness of guideline faecal indicator organism values in estimation of exposure risk at recreational coastal sites. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 47(3), 191–198. http://www.ncbi.nlm.nih.gov/pubmed/12639028 [CrossRef] [Google Scholar]
  12. Watkiss, P., & Hunt, A. (2012). Projection of economic impacts of climate change in sectors of Europe based on bottom up analysis: human health. Climatic Change, 112(1), 101–126. https://doi.org/10.1007/s10584-011-0342-z [CrossRef] [Google Scholar]
  13. World Health Organization Regional Office for Europe. (2015). Food safety in the WHO European Region. Food Safety Fact Sheet. http://www.euro.who.int/__data/assets/pdf_file/0003/274467/fact-sheet-whd2015-en.pdf?ua=1 [Google Scholar]
  14. Drăgoi, M. C., Andrei, J. V., Mieilă, M., Panait, M., Dobrotă, C. E., & Lădaru, R. G. (2018). Food Safety and Security in Romania – An Econometric Analysis in the Context of National Agricultural Paradigm Transformation. Amfiteatru Economic, 20(47), 134–150. https://doi.org/10.24818/EA/2018/47/134 [Google Scholar]
  15. Bentham, G., & Langford, I. H. (1995). Climate change and the incidence of food poisoning in England and Wales. International Journal of Biometeorology, 39(2), 81–86. https://doi.org/10.1007/BF01212585 [CrossRef] [Google Scholar]
  16. Chhetri, B. K., Galanis, E., Sobie, S., Brubacher, J., Balshaw, R., Otterstatter, M., Mak, S., Lem, M., Lysyshyn, M., Murdock, T., Fleury, M., Zickfeld, K., Zubel, M., Clarkson, L., & Takaro, T. K. (2019). Projected local rain events due to climate change and the impacts on waterborne diseases in Vancouver, British Columbia, Canada. Environmental Health, 18(1), 116. https://doi.org/10.1186/s12940-019-0550-y [CrossRef] [Google Scholar]
  17. Cissé, G. (2019). Food-borne and water-borne diseases under climate change in low- and middle-income countries: Further efforts needed for reducing environmental health exposure risks. Acta Tropica, 194, 181–188. https://doi.org/10.1016/j.actatropica.2019.03.012 [CrossRef] [PubMed] [Google Scholar]
  18. European Centre for Disease Prevention and Control. (2020). Climate change in Europe. https://ecdc.europa.eu/en/climate-change/climate-change-europe [Google Scholar]
  19. Lal, A., Ikeda, T., French, N., Baker, M. G., & Hales, S. (2013). Climate Variability, Weather and Enteric Disease Incidence in New Zealand: Time Series Analysis. PLOS ONE, 8(12), e83484. https://doi.org/10.1371/journal.pone.0083484 [CrossRef] [Google Scholar]
  20. Miraglia, M., Marvin, H. J. P., Kleter, G. A., Battilani, P., Brera, C., Coni, E., Cubadda, F., Croci, L., De Santis, B., Dekkers, S., Filippi, L., Hutjes, R. W. A., Noordam, M. Y., Pisante, M., Piva, G., Prandini, A., Toti, L., van den Born, G. J., & Vespermann, A. (2009). Climate change and food safety: An emerging issue with special focus on Europe. Food and Chemical Toxicology, 47(5), 1009–1021. https://doi.org/10.1016/j.fct.2009.02.005 [CrossRef] [Google Scholar]
  21. Smith, B. A., Meadows, S., Meyers, R., Parmley, E. J., & Fazil, A. (2019). Seasonality and zoonotic foodborne pathogens in Canada: relationships between climate and Campylobacter, E. coli and Salmonella in meat products. Epidemiology and Infection, 147, e190. https://doi.org/10.1017/S0950268819000797 [CrossRef] [Google Scholar]
  22. Zhang, Y. (2007). The Relationship between Climate Variation and Selected Infectious Diseases: Australian and Chinese Perspectives. PhD Thesis: The University of Adelaide. [Google Scholar]
  23. Lawley, R. (2013). Salmonella. Food Safety Watch. The Science of Safe Food. http://www.foodsafetywatch.org/factsheets/salmonella/ [Google Scholar]
  24. European Environment Agency. (2017). Economic losses from climate-related extremes. Climate Change Adaptation. https://www.eea.europa.eu/data-and-maps/indicators/direct-losses-from-weather-disasters-3/assessment-1 [Google Scholar]
  25. OECD. (2015). The Economic Consequences of Climate Change. OECD Publishing. https://doi.org/10.1787/9789264235410-en [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.