Open Access
Issue
SHS Web Conf.
Volume 98, 2021
The Third Annual International Symposium “Education and City: Education and Quality of Living in the City” (Education and City 2020)
Article Number 03002
Number of page(s) 6
Section Development of Urban Educational Potential
DOI https://doi.org/10.1051/shsconf/20219803002
Published online 09 March 2021
  1. H. Abelson, Journal of Science Education and Technology, 17(2), 164–174 (2007) [Google Scholar]
  2. H. Drachsler, K. Verbert, O.C. Santos, N. Manouselis, Panorama of recommender systems to support learning, in Recommender systems handbook (Springer, Boston, MA, 2015) http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-1-4899-7637-6_12 [Google Scholar]
  3. N. Manouselis, H. Drachsler, K. Verbert, E. Duval, Survey and Analysis of TEL Recommender Systems, in Recommender Systems for Learning, SpringerBriefs in Electrical and Computer Engineering. Springer, New York, 2013) https://doi.org/10.1007/978-1-4614-4361-2_3 [CrossRef] [Google Scholar]
  4. E. Patarakin, V. Burov, B. Yarmakhov, Computational Pedagogy: Thinking, Participation, Reflection, in Digital Turn in Schools—Research, Policy, Practice, Lecture Notes in Educational Technology (Springer, Singapore, 2019) https://doi.org/10.1007/978-981-13-7361-9_9 [Google Scholar]
  5. S. Vachkova, E. Patarakin, E. Petryaeva, SHS Web of Conferences, 79, 01017 (2020) https://doi.org/10.1051/shsconf/20207901017 [Google Scholar]
  6. S. Dwivedi, V.K. Roshni, Recommender system for big data in education, in 2017 5th National Conference on E-Learning & E-Learning Technologies (ELELTECH), IEEE, 3-4 August 2017, Hyderabad, India (2017). https://doi.org/10.1109/ELELTECH.2017.8074993 [Google Scholar]
  7. N. Hoic-Bozic, M. Holenko Dlab, V. Mornar, IEEE Transactions on Education, 59(1), 39–44 (2016). https://doi.org/10.1109/TE.2015.2427116 [Google Scholar]
  8. F. Ricci, L. Rokach, B. Shapira, Introduction to Recommender Systems Handbook (Springer, Boston, MA, 2015). https://doi.org/10.1007/978-0-387-85820-3_1 [Google Scholar]
  9. R. Burke, Hybrid Web Recommender Systems, in The Adaptive Web. Lecture Notes in Computer Science, volume 4321 (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-72079-9_12. [CrossRef] [Google Scholar]
  10. G. Karypis, Improving Higher Education: Learning Analytics & Recommender Systems Research, in Proceedings of the Eleventh ACM Conference on Recommender Systems, SIGCHI, August 2017, Como, Italy (2017).https://doi.org/10.1145/3109859.3109870 [Google Scholar]
  11. M. Goga, S. Kuyoro, N. Goga, Procedia-Social and Behavioral Sciences, 180, 1481–1488 (2015). https://doi.org/10.1016/j.sbspro.2015.cog02.296 [Google Scholar]
  12. J. Lin, H. Pu, Y. Li, J. Lian, Procedia Computer Science, 129, 449–453 (2018). https://doi.org/10.1016/j.procs.2018.03.023 [Google Scholar]
  13. C. Obeid, I. Lahoud, H. El Khoury, P.A. Champin, Ontology-based Recommender System in Higher Education, in Companion Proceedings of The Web Conference, IW3C2, April 2018, Lyon, France (2018). https://doi.org/10.1145/3184558.3191533 [Google Scholar]
  14. A. Tagarelli, R. Interdonato, Mining Lurkers in Online Social Networks: Principles, Models, and Computational Methods (Springer, Cham, 2018). https://doi.org/10.1007/978-3-030-00229-9 [Google Scholar]
  15. T. Van Mierlo, J Med Internet Res, 16(2), e33 (2014). https://doi.org/10.2196/jmir.2966 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.