Open Access
Issue
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
Article Number 01003
Number of page(s) 10
Section Technology Assisted Language Learning
DOI https://doi.org/10.1051/shsconf/202110201003
Published online 03 May 2021
  1. J. W. OllerJr. Dictation as a device for testing foreign language proficiency. English Language Teaching, 15, 254-259 (1971) [CrossRef] [Google Scholar]
  2. A. Wong and P. Leeming. Using dictation to measure language proficiency. Language Education in Asia, 5, 1, 160-169 (2014) [CrossRef] [Google Scholar]
  3. A. Yazdinejad and M. Zeraatpishe. Investigating the validity of partial dictation as a test of overall language proficiency. International Journal of Language Testing, 9, 2, 44-55 (2019) [Google Scholar]
  4. P. Leeming and A. Wong. Using dictation to measure language proficiency: A Rasch analysis. Language Testing and Assessment, 5, 2, 1-25 (2016) [Google Scholar]
  5. P. Irvine, P. Atai, and J. W. OllerJr. Cloze, Dictation, and the Test of English as a Foreign Language. Language Learning, 24, 2, 245-252 (1974) [CrossRef] [Google Scholar]
  6. S. Kazazoğlu. Dictation as a language learning tool. Procedia-Social and Behavioral Sciences, 70, 1338-1346 (2013) [CrossRef] [Google Scholar]
  7. M. Kanzaki. Minimal English Test: Item analysis and comparison with TOEIC scores. SHIKEN, 19, 2, 12-23 (2015) [Google Scholar]
  8. K. Kotani and T. Yoshimi. Effectiveness of Linguistic and Learner Features for Listenability Measurement Using a Decision Tree Classifier. The Journal of Information and Systems in Education, 16, 1, 7-11 (2017) [CrossRef] [Google Scholar]
  9. International Phonetic Association. Handbook of the International Phonetic Association: A Guide to the Use of the International Phonetic Alphabet. Cambridge: Cambridge University Press (1999) [Google Scholar]
  10. D. Deterding. The North Wind versus a Wolf: Short texts for the description and measurement of English pronunciation. Journal of the International Phonetic Association, 36, 2, 187-196 (2006) [CrossRef] [Google Scholar]
  11. Chauncey Group International. TOEIC Technical Manual. Princeton, NJ: Chauncey Group International (1998) [Google Scholar]
  12. J. S. Chall and H. E. Dial. Predicting listener understanding and interest in newscasts. Educational Research Bulletin, 27, 6, 141-153+168 (1948) [Google Scholar]
  13. I. E. Fang. The Easy Listening Formula. Journal of Broadcasting, 11, 1, 63-68 (1966) [CrossRef] [Google Scholar]
  14. R. Remus. Improving Sentence-level Subjectivity Classification through Readability Measurement. Proceedings of the 18th Nordic Conference of Computational Linguistics, 168-174 (2011) [Google Scholar]
  15. H. Kiyokawa. A formula for predicting listenability: The listenability of English language materials 2. Wayo Women’s University Language and Literature, 24, 57-74 (1990) [Google Scholar]
  16. J. Messerklinger. Listenability. Center for English Language Education Journal, 14, 5670 (2006) [Google Scholar]
  17. A. Stenton. The role of the syllable in foreign language learning: Improving oral production through dual-coded sound-synchronised typographic annotations. Language Learning in Higher Education: Journal of the European Confederation of Language Centres in Higher Education (CercleS), 2, 1, 145-161 (2013) [Google Scholar]
  18. V. N. Vapnik. Statistical Learning Theory. New York: John Wiley & Sons (1998) [Google Scholar]
  19. D. Meyer, E. Dimitriadou, K. Hornik et al. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, https://cran.rproject.org/web/packages/e1071 (2018) [Google Scholar]
  20. R. B. Rao, G. Fung, and R. Rosales. On the dangers of cross-validation: An experimental evaluation. Proceedings of the 2008 SIAM International Conference on Data Mining, 588-596 (2008) [CrossRef] [Google Scholar]
  21. J. Neter, M. Kutner, W. Wasserman, and C. Nachtsheim. Applied Linear Statistical Models (4th ed.). New York: McGraw Hill (1996) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.