Open Access
Issue
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
Article Number 04013
Number of page(s) 8
Section Applications in Computer Science
DOI https://doi.org/10.1051/shsconf/202110204013
Published online 03 May 2021
  1. Domo.com. 2020. Becoming A Data-Driven CEO — Domo. [online] Available at: https://www.domo.com/solution/data-never-sleeps-6 [Accessed 12 June 2020]. [Google Scholar]
  2. Pan, W., Li, Z., Zhang, Y. and Weng, C., 2018. The new hardware development trend and the challenges in data management and analysis. Data Science and Engineering, 3(3), pp.263-276. [Google Scholar]
  3. Rahman, M. and Hamada, M., 2019. Lossless Image ComPression Techniques: A State-of-the-Art Survey. Symmetry, 11(10), p.1274. [Google Scholar]
  4. Rahman, M.A., Shin, J., Saha, A.K. and Islam, M.R., 2018, June. A Novel Lossless Coding Technique for Image ComPression. In 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR) (pp. 82-86). IEEE. [Google Scholar]
  5. Sadchenko, A.; Kushnirenko, O.; Plachinda, O. Fast lossy comPression algorithm for medical images. In Proceedings of the 2016 International Conference on Electronics and Information Technology (EIT), Odessa, Ukraine, 23–27 May 2016; pp. 1–4. [Google Scholar]
  6. Pandey, M.; Shrivastava, S.; Pandey, S.; Shridevi, S. An Enhanced Data ComPression Algorithm. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Tamil Nadu, India, 24–25 February 2020; pp. 1–4. [Google Scholar]
  7. Bovik, A.C. ed., 2009. The essential guide to image processing. Academic Press. [Google Scholar]
  8. Rahman, M.A. and Hamada, M., 2019, October. A Semi-Lossless Image ComPression Procedure using a Lossless Mode of JPEG. In 2019 IEEE 13th International Symposium on Embedded Multicore/Manycore Systems-on-Chip (MCSoC) (pp. 143-148). IEEE. [Google Scholar]
  9. Rahman, M., Hamada, M. and Shin, J., 2021. The Impact of State-of-the-Art Techniques for Lossless Still Image ComPression. Electronics, 10(3), p.360. [Google Scholar]
  10. Oswald, C.; Sivaselvan, B. An optimal text comPression algorithm based on frequent pattern mining. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 803–822. [Google Scholar]
  11. Portell, J.; Iudica, R.; Garc´ıa-Berro, E.; Villafranca, A.G.; Artigues, G. FAPEC, a versatile and efficient data comPressor for space missions. Int. J. Remote Sens. 2018, 39, 2022–2042. [Google Scholar]
  12. Rahim, R. Combination of the Blowfish and Lempel-Ziv-Welch Algorithms for Text ComPression; OSF Storage: STMIK Triguna Dharma, Universiti Malaysia Perlis, 2017. [Google Scholar]
  13. Welch, T.A. A technique for high-performance data comPression. Computer 1984, 17, 8–19. [Google Scholar]
  14. Storer, J.A. (Ed.) Image and Text ComPression; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 176. [Google Scholar]
  15. Salomon, D. A Concise Introduction to Data ComPression; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
  16. Nelson, M.; Gailly, J.L. The Data ComPression Book, 2nd ed.; M & T Books: New York, NY, USA, 1995. [Google Scholar]
  17. Gupta, A.; Bansal, A.; Khanduja, V. Modern lossless comPression techniques: Review, comparison and analysis. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 22–24 February 2017; pp. 1–8. [Google Scholar]
  18. Rahman, M. and Hamada, M., 2020. Burrows–Wheeler Transform Based Lossless Text ComPression Using Keys and Huffman Coding. Symmetry, 12(10), p.1654. [Google Scholar]
  19. Burrows, M.; Wheeler, D.J. A Block-Sorting Lossless Data ComPression Algorithm; Systems Research Center: Palo Alto, CA, USA, 1994. [Google Scholar]
  20. Patel, R.A.; Zhang, Y.; Mak, J.; Davidson, A.; Owens, J.D. Parallel lossless data comPression on the GPU. In Proceedings of the 2012 Innovative Parallel Computing (InPar), San Jose, CA, USA, 13–14 May 2012; pp. 1–9. [Google Scholar]
  21. Sharma, M., 2010. ComPression using Huffman coding. IJCSNS International Journal of Computer Science and Network Security, 10(5), pp.133-141. [Google Scholar]
  22. Rufai, A.M., Anbarjafari, G. and Demirel, H., 2013, April. Lossy medical image comPression using Huffman coding and singular value decomposition. In 2013 21st Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. [Google Scholar]
  23. Rahman, M.A., Rabbi, M.F., Rahman, M.M., Islam, M.M. and Islam, M.R., 2018, September. Histogram modification based lossy image comPression scheme using Huffman coding. In 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT) (pp. 279-284). IEEE. [Google Scholar]
  24. Storer, J.A. and Szymanski, T.G., 1982. Data comPression via textual substitution. Journal of the ACM (JACM), 29(4), pp.928-951. [Google Scholar]
  25. Deutsch, P., 1996. RFC1951: DEFLATE comPressed data format specification version 1.3. [Google Scholar]
  26. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I., 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8), p.9. [Google Scholar]
  27. Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I., 2018. Improving language understanding by generative pre-training. https://s3-us-west-2.amazonaws.com/openaiassets/research-covers/language-unsupervised/languageunderstandingpaper.pdf [Google Scholar]
  28. Sennrich, R., Haddow, B. and Birch, A., 2015. Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.