Open Access
Issue
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
Article Number 04017
Number of page(s) 5
Section Applications in Computer Science
DOI https://doi.org/10.1051/shsconf/202110204017
Published online 03 May 2021
  1. Achraf Ben Ahmed, Yumiko Kimezawa, Abderazek Ben Abdallah, “Hardware/software prototyping of dependable real-time system for elderly health monitoring”, World Congress on Computer and Information Technology (WCCIT) 2013, pp. 1-6, 2013. [Google Scholar]
  2. Achraf Ben Ahmed, A. Ben Abdallah, ”Architecture and Design of Real-Time Systems for Elderly Health Monitoring,” Journal of Embedded Systems, 2017, Vol.9, No.5, pp.484–494, DOI: 10.1504/IJES.2017.10007717 [CrossRef] [Google Scholar]
  3. G. C. Peng, “Moving toward model reproducibility and reusability,” IEEE Trans. on Biomedical Engineering, Vol. 63, no. 10, pp. 1997–1998, 2016. [CrossRef] [Google Scholar]
  4. S. L. Grimes, “The challenge of integrating the healthcare enterprise,” IEEE Engineering in Medicine and Biology Magazine, Vol. 24, no. 2, pp. 122–124, 2005. [CrossRef] [Google Scholar]
  5. Q.-V. Pham, D. C. Nguyen, W.-J. Hwang, P. N. Pathirana et al., “Artificial intelligence (ai) and big data for coronavirus (covid-19) pandemic: A survey on the state-of-the-arts,” 2020. [Google Scholar]
  6. B. Benreguia, H. Moumen, and M. A. Merzoug, “Tracking covid-19 by tracking infectious trajectories,” IEEE Access, Vol. 8, pp. 145242–145255, 2020. [CrossRef] [Google Scholar]
  7. Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time series,” The handbook of brain theory and neural networks, Vol. 3361, no. 10, p. 1995. [Google Scholar]
  8. The H. Vu, Ryunosuke Murakami, Yuichi Okuyama, and Abderazek Ben Abdallah, ”Efficient Optimization and Hardware Acceleration of CNNs towards the Design of a Scalable Neuro-inspired Architecture in Hardware,” IEEE Int. Conf. on Big Data and Smart Computing (BigComp 2018), Shanghai, China, January 15-18, 2018. [Google Scholar]
  9. Tomohide Fukuchi, Ogbodo Mark Ikechukwu, and Abderazek Ben Abdallah. ”Design and Optimization of a Deep Neural Network Architecture for Traffic Light Detection,” ACM Chapter Int. Conf. on Educational Technology, Language and Technical Communication (ETLTC), January 27-31, 2020, Aizuwakamatsu, Japan. [Google Scholar]
  10. M. Sun, F. Wang, T. Min, T. Zang, and Y. Wang, “Prediction for high risk clinical symptoms of epilepsy based on deep learning algorithm,” IEEE Access, Vol. 6, pp. 77596–77605, 2018. [CrossRef] [Google Scholar]
  11. L. Liu, F.-X. Wu, Y.-P. Wang, and J. Wang, “Multi-receptive-field cnn for semantic segmentation of medical images,” IEEE Journal of Biomedical and Health Informatics, Vol. 24, no. 11, pp. 3215–3225, 2020. [CrossRef] [Google Scholar]
  12. Abderazek Ben Abdallah, Huakun Huang, Nam Khanh Dang, and Jiangning Song, “AI processor”, Japanese Patent Application LaidOpen No 2020-194733. [Google Scholar]
  13. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–1282. [Google Scholar]
  14. T. Li, A. K. Sahu, A. Talwalkar and V. Smith, “Federated Learning: Challenges, Methods, and Future Directions,” in IEEE Signal Processing Magazine, Vol. 37, no. 3, pp. 50-60, May 2020, doi: 10.1109/MSP.2020.2975749. [Google Scholar]
  15. W. Li, C. Chen, M. Zhang, H. Li, and Q. Du, “Data augmentation for hyperspectral image classification with deep cnn,” IEEE Geoscience and Remote Sensing Letters, Vol. 16, no. 4, pp. 593–597, 2018. [CrossRef] [Google Scholar]
  16. D. S. Kermany, M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan et al., “Identifying medical diagnoses and treatable diseases by image-based deep learning,” Cell, Vol. 172, no. 5, pp. 1122–1131, 2018. [CrossRef] [Google Scholar]
  17. J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Q. Duong, and M. Ghassemi, “Covid-19 image data collection: Prospective predictions are the future,” arXiv preprint arXiv:2006.11988, 2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.