Open Access
Issue
SHS Web Conf.
Volume 102, 2021
The 3rd ETLTC International Conference on Information and Communications Technology (ETLTC2021)
Article Number 04019
Number of page(s) 5
Section Applications in Computer Science
DOI https://doi.org/10.1051/shsconf/202110204019
Published online 03 May 2021
  1. Rui Han, Lu Huang, Hong Jiang, Jin Dong, Hongfen Peng, and Dongyou Zhang. Early clinical and CT manifestations of coronavirus disease 2019 (COVID19) pneumonia. American Journal of Roentgenology, 215(2):338–343, August 2020. [Google Scholar]
  2. World Health Organization. Who coronavirus disease (covid-19) dashboard, 2020. [Google Scholar]
  3. Yunpeng Ji, Zhongren Ma, Maikel P Peppelenbosch, and Qiuwei Pan. Potential association between COVID-19 mortality and health-care resource availability. The Lancet Global Health, 8(4): e480, April 2020. [Google Scholar]
  4. Abderazek Ben Abdallah, Huankun Huang, Nam Khanh Dang, and Jiangning Song. Ai processor, Nov. 2020. Japanese Patent Application Laid-Open No 2020-194733. [Google Scholar]
  5. Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, , and the CAMELYON16 Consortium. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22):2199–2210, 2017. [Google Scholar]
  6. Paras Lakhani and Baskaran Sundaram. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284(2):574–582, August 2017. [Google Scholar]
  7. Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639):115–118, January 2017. [Google Scholar]
  8. J. Wang, Y. Bao, Y. Wen, H. Lu, H. Luo, Y. Xiang, X. Li, C. Liu, and D. Qian. Prior-attention residual learning for more discriminative covid-19 screening in ct images. IEEE Transactions on Medical Imaging, 39(8):2572–2583, 2020. [Google Scholar]
  9. X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and C. Zheng. A weakly-supervised framework for covid-19 classification and lesion localization from chest ct. IEEE Transactions on Medical Imaging, 39(8):2615–2625, 2020. [Google Scholar]
  10. L. Meng, D. Dong, L. Li, M. Niu, Y. Bai, M. Wang, X. Qiu, Y. Zha, and J. Tian. A deep learning prognosis model help alert for covid-19 patients at highrisk of death: A multi-center study. IEEE Journal of Biomedical and Health Informatics, 24(12):3576–3584, 2020. [Google Scholar]
  11. Paul Mooney. Chest X-Ray Images (Pneumonia). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia, 2020. [Google Scholar]
  12. Hidemi Isihara. In An Introduction to FPGAs for Software Engineers, pages 96–165, 2017. [Google Scholar]
  13. Tong Geng, Tianqi Wang, Ahmed Sanaullah, Chen Yang, Rui Xu, Rushi Patel, and Martin Herbordt. Acceleration and load balancing of cnn training on fpga clusters. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2018. [Google Scholar]
  14. Joseph Paul Cohen, Paul Morrison, Lan Dao, Karsten Roth, Tim Q Duong, and Marzyeh Ghassemi. Covid-19 image data collection: Prospective predictions are the future, 2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.