Open Access
Issue
SHS Web Conf.
Volume 124, 2021
International Conference on Management, Social Sciences & Humanities (ICMeSH 2020)
Article Number 08003
Number of page(s) 7
Section Human Capital Management for Sustainability
DOI https://doi.org/10.1051/shsconf/202112408003
Published online 15 November 2021
  1. Abrahamse, W., Steg, L., Vlek, C., & Rothengatter, T. (2005). A review of intervention studies aimed at household energy conservation. Journal of environmental psychology, 25(3), 273–291. [CrossRef] [Google Scholar]
  2. Adler, M., & Ziglio, E. (1996). Gazing into the oracle: The Delphi method and its application to social policy and public health: Jessica Kingsley Publishers. [Google Scholar]
  3. Ali, S. S. S., Razman, M. R., & Awang, A. (2020). The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia. International Journal of Energy Economics and Policy, 10(3), 84. [CrossRef] [Google Scholar]
  4. Biying, Y., Zhang, J., & Fujiwara, A. (2012). Analysis of the residential location choice and household energy consumption behavior by incorporating multiple self-selection effects. Energy Policy, 46, 319–334. [CrossRef] [Google Scholar]
  5. Bögel, P. M., Upham, P., Shahrokni, H., & Kordas, O. (2020). What is needed for citizen-centered urban energy transitions: Insights on attitudes towards decentralized energy storage. Energy Policy, 112032. [Google Scholar]
  6. Borade, A. B., Kannan, G., & Bansod, S. V. (2013). Analytical hierarchy process-based framework for VMI adoption. International Journal of Production Research, 51(4), 963–978. [CrossRef] [Google Scholar]
  7. Bornemann, B., Sohre, A., & Burger, P. (2018). Future governance of individual energy consumption behavior change—A framework for reflexive designs. Energy research & social science, 35, 140–151. [CrossRef] [Google Scholar]
  8. Boudet, H. S. (2019). Public perceptions of and responses to new energy technologies. Nature energy, 4(6), 446–455. [CrossRef] [Google Scholar]
  9. Bows-Larkin, A. (2015). All adrift: aviation, shipping, and climate change policy. Climate Policy, 15(6), 681–702. [CrossRef] [Google Scholar]
  10. Burger, P., Bezençon, V., Bornemann, B., Brosch, T., Carabias-Hütter, V., Farsi, M., ... Samuel, R. (2015). Advances in understanding energy consumption behavior and the governance of its change-outline of an integrated framework. Frontiers in energy research, 3, 29. [CrossRef] [Google Scholar]
  11. Chen, C.-T., Lin, C.-T., & Huang, S.-F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International journal of production economics, 102(2), 289–301. [CrossRef] [Google Scholar]
  12. Chen, C., Xue, B., Cai, G., Thomas, H., & Stückrad, S. (2019). Comparing the energy transitions in Germany and China: Synergies and recommendations. Energy Reports, 5, 1249–1260. [CrossRef] [Google Scholar]
  13. Delina, L., & Janetos, A. (2018). Cosmopolitan, dynamic, and contested energy futures: navigating the pluralities and polarities in the energy systems of tomorrow. Energy research & social science, 35, 1–10. [CrossRef] [Google Scholar]
  14. Dubois, G. (2015). Living on a carbon diet. Low Carbon Economy, 6(01), 13. [CrossRef] [Google Scholar]
  15. Dubois, G., Sovacool, B., Aall, C., Nilsson, M., Barbier, C., Herrmann, A., ... Nadaud, F. (2019). It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy research & social science, 52, 144–158. [CrossRef] [Google Scholar]
  16. Fielding, K. S., Louis, W. R., Warren, C. M., & Thompson, A. (2010). Environmental sustainability in residential housing: understanding attitudes and behaviour towards waste, water, and energy consumption and conservation among Australian households. AHURI Final Report, 152, 1–132. [Google Scholar]
  17. Fink, A., & Kosecoff, J. (1985). How to conduct surveys. Beverly Hills: CA: Sage Publications. [Google Scholar]
  18. Frederiks, E. R., Stenner, K., & Hobman, E. V. (2015). Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour. Renewable and Sustainable Energy Reviews, 41, 1385–1394. [CrossRef] [Google Scholar]
  19. Gardner, G., & Stern, P. (2002). Human reactions to environmental hazards: Perceptual and cognitive processes. Environmental problems and human behavior, 205–252. [Google Scholar]
  20. Goldstein, N. J., Cialdini, R. B., & Griskevicius, V. (2008). A room with a viewpoint: Using social norms to motivate environmental conservation in hotels. Journal of consumer Research, 35(3), 472482. [Google Scholar]
  21. Good, N. (2019). Using behavioural economic theory in modelling of demand response. Applied Energy, 239, 107–116. [CrossRef] [Google Scholar]
  22. Henryson, J., Hakansson, T., & Pyrko, J. (2000). Energy efficiency in buildings through information-Swedish perspective. Energy Policy, 28(3), 169–180. [CrossRef] [Google Scholar]
  23. Hernandez, D., Lister, M., & Suarez, C. (2011). Location efficiency and housing type: Boiling it down to BTUs: Jonathan Rose Companies. [Google Scholar]
  24. Jiang, Z., Zhang, H., & Sutherland, J. W. (2011). Development of multi-criteria decision making model for remanufacturing technology portfolio selection. Journal of Cleaner Production, 19(17-18), 1939–1945. [CrossRef] [Google Scholar]
  25. Jones, H., & Twiss, B. C. (1978). Forecasting technology for planning decisions. [Google Scholar]
  26. Kaiser, F. G., & Weber, O. (1999). Umwelteinstellung und ökologisches Verhalten: Wie groß ist der Einfluß wirklich? GAIA-Ecological Perspectives for Science and Society, 8(3), 197–201. [CrossRef] [Google Scholar]
  27. Kannan, D., de Sousa Jabbour, A. B. L., & Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research, 233(2), 432–447. [CrossRef] [Google Scholar]
  28. Kardooni, R., Yusoff, S. B., & Kari, F. B. (2015). Barriers to renewable energy development: five fuel policy in Malaysia. Energy & Environment, 26(8), 1353–1361. [CrossRef] [Google Scholar]
  29. Langaas, R. F., Flpttum, K., & Gjerstad, O. (2019). Expressing one’s conceptions of lifestyle in a climate perspective. Cahiers de praxématique(73). [Google Scholar]
  30. Martiskainen, M. (2007). Affecting consumer behaviour on energy demand. [Google Scholar]
  31. Moey, L. K., Goh, K. S., Tong, D. L., Chong, P. L., Adam, N. M., & Ahmad, K. A. (2020). A review on current energy usage and potential of sustainable energy in Southeast Asia countries. Journal of Sustainability Science and Management, 15(2), 89–107. [Google Scholar]
  32. N’Famory, C., Xu, D., & Binyet, E. (2018). Enhancing household energy consumption: How should it be done? Renewable and Sustainable Energy Reviews, 81(P1), 669–681. [CrossRef] [Google Scholar]
  33. Nahiduzzaman, K. M., Aldosary, A. S., Abdallah, A. S., Asif, M., Kua, H. W., & Alqadhib, A. M. (2018). Households energy conservation in Saudi Arabia: Lessons learnt from change-agents driven interventions program. Journal of Cleaner Production, 185, 998–1014. [CrossRef] [Google Scholar]
  34. Outlook, A. E. (2011). The 3rd ASEAN Energy Outlook. Asean SOE Leaders, Ministry of the Economy, trade and industry, Japan: The Institute of Energy Economics, The Asean Centre for Energy, The National ESSPA Project Teams. [Google Scholar]
  35. Parag, Y. (2020). Which factors influence large households’ decision to join a time-of-use program? The interplay between demand flexibility, personal benefits and national benefits. Renewable and Sustainable Energy Reviews, 110594. [Google Scholar]
  36. Piccolo, L. S., De Liddo, A., Burel, G., Fernandez, M., & Alani, H. (2018). Collective intelligence for promoting changes in behaviour: a case study on energy conservation. AI & SOCIETY, 33(1), 15–25. [CrossRef] [Google Scholar]
  37. Pillay, D. (2013). Electricity conservation: factors influencing sustainable energy efficient consumer behaviour in the South African household. Citeseer. [Google Scholar]
  38. Prokopy, L. S., Floress, K., Arbuckle, J. G., Church, S. P., Eanes, F. R., Gao, Y., ... Singh, A. S. (2019). Adoption of agricultural conservation practices in the United States: Evidence from 35 years of quantitative literature. Journal of Soil and Water Conservation, 74(5), 520–534. [CrossRef] [Google Scholar]
  39. Rogge, K. S., Pfluger, B., & Geels, F. W. (2020). Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010-2050). Technological Forecasting and Social Change, 151, 119259. [CrossRef] [Google Scholar]
  40. Saaty, T. L. (1994). How to make a decision: the analytic hierarchy process. Interfaces, 24(6), 19–43. [CrossRef] [Google Scholar]
  41. Shahmohammadi, M. S. (2015). DEVELOPMENT OF SYSTEM DYNAMIC MODEL TO EVALUATE THE IMPACT OF FEED-IN TARIFF FOR DIFFERENT ENERGY RESOURCES. [Google Scholar]
  42. Shahzad, U., Doğan, B., Sinha, A., & Fareed, Z. (2020). Does Export product diversification help to reduce energy demand: Exploring the contextual evidences from the newly industrialized countries. Energy, 214, 118881. [Google Scholar]
  43. Shove, E. (2010). Beyond the ABC: climate change policy and theories of social change. Environment and planning A, 42(6), 1273–1285. [CrossRef] [Google Scholar]
  44. Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007). The Delphi method for graduate research. Journal of Information Technology Education: Research, 6(1), 1–21. [Google Scholar]
  45. Sorrell, S. (2015). Reducing energy demand: A review of issues, challenges and approaches. Renewable and Sustainable Energy Reviews, 47, 74–82. [CrossRef] [Google Scholar]
  46. Stern, P. C. (1992). What psychology knows about energy conservation. American Psychologist, 47(10), 1224. [CrossRef] [Google Scholar]
  47. Tozer, L., & Klenk, N. (2018). Discourses of carbon neutrality and imaginaries of urban futures. Energy research & social science, 35, 174–181. [CrossRef] [Google Scholar]
  48. Williams, S. P., Thondhlana, G., & Kua, H. W. (2020). Electricity Use Behaviour in a High-Income Neighbourhood in Johannesburg, South Africa. Sustainability, 12(11), 4571. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.