Open Access
SHS Web Conf.
Volume 130, 2021
IMPEC 2020 : Les sensorialités - Interactions Multimodales Par Écran
Article Number 02001
Number of page(s) 10
Section Partie 2 : avatars – réalité virtuelle – contexte pédagogique
Published online 15 December 2021
  1. Barra Julien, Giroux Marion, Metral Morgane, Cian Corinne, Luyat Marion, Kavounoudias Anne, Guerraz Michel. (2020). Functional properties of extended body representations in the context of kinesthesia. Neurophysiologie Clinique / Clinical Neurophysiology, vol. 50, n°6, p. 455–465. [Google Scholar]
  2. Beaudoin Marine, Barra Julien, Dupraz Louise, Mollier-Sabet Pauline, Guerraz Michel. (2020). The impact of embodying an “elderly” body avatar on motor imagery. Experimental Brain Research, vol. 238, n°6, p. 1467–1478. [Google Scholar]
  3. Bevilacqua Frédéric, Segalen Maël, Marchand-Pauvert Véronique, Peyre Iseline, Pradat-Diehl Pascale, Roby-Brami Agnès. (2018). Exploring Different Movement Sonification Strategies for Rehabilitation in Clinical Settings. Proceedings of the 5th International Conference on Movement and Computing, n° 42, p. 1–6. [Google Scholar]
  4. Blanchard Caroline, Roll Régine, Roll Jean. Pierre, Kavounoudias Anne. (2013). Differential Contributions of Vision, Touch and Muscle Proprioception to the Coding of Hand Movements. PLoS ONE, vol. 8, n°4, p. e62475. [Google Scholar]
  5. Bock Otmar, Pipereit Katja, Mierau Andreas. (2007). A method to reversibly degrade proprioceptive feedback in research on human motor control. Journal of Neuroscience Methods, vol. 160, n°2, p. 246–250. [Google Scholar]
  6. Botvinick Matthew, Cohen Jonathan. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, vol. 391, n° 6669, p. 756. [Google Scholar]
  7. Brandt T, Dichgans J, Koenig E. (1972). Perception of self-rotation (circular vection) induced by optokinetic stimuli. Pflugers Archiv: European Journal of Physiology, vol. 332, p. Suppl 332:R98–Suppl 332:R98. [Google Scholar]
  8. Brun Clémentine, Guerraz Michel. (2015). Anchoring the “floating arm”: Use of proprioceptive and mirror visual feedback from one arm to control involuntary displacement of the other arm. Neuroscience, vol. 310, p. 268–278. [Google Scholar]
  9. Brun Clémentine, Metral Morgane, Chancel Marie, Kavounoudias Anne, Luyat Marion, Guerraz Michel. (2015). Passive or simulated displacement of one arm (but not its mirror reflection) modulates the involuntary motor behavior of the other arm. Neuroscience, vol. 285, p. 343–355. https://doi.Org/10.1016/j.neuroscience.2014.11.036 [Google Scholar]
  10. Calvin-Figuière Sarah, Romaiguère Patricia, Gilhodes Jean-Claude, Roll Jean-Pierre. (1999). Antagonist motor responses correlate with kinesthetic illusions induced by tendon vibration. Experimental Brain Research, vol. 124, n°3, p. 342–350. [Google Scholar]
  11. Carruthers Glenn. (2009). Is the body schema sufficient for the sense of embodiment? An alternative to de Vignemont’s model. Philosophical Psychology, vol. 22, n° 2, p. 123–142. [Google Scholar]
  12. Chancel Marie, Blanchard Caroline, Guerraz Michel, Montagnini Anna, Kavounoudias Anne. (2016). Optimal visuotactile integration for velocity discrimination of self-hand movements. Journal of Neurophysiology, vol. 116, n°3, p. 1522–1535. [Google Scholar]
  13. Collins, Davide. F. Prochazka Arthur. (1996). Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. The Journal of Physiology, vol. 496, n° 3, p. 857–871. [Google Scholar]
  14. de Vignemont Frédérique. (2010). Body schema and body image—Pros and cons. Neuropsychologia, vol. 48, n° 3, p. 669–680. [Google Scholar]
  15. de Vignemont Frédérique. (2011). Embodiment, ownership and disownership. Consciousness and Cognition, vol. 20, n° 1, p. 82–93. [Google Scholar]
  16. Effenberg, Alfred. O. (2004). Using Sonification to Enhance Perception and Reproduction Accuracy of Human Movement Patterns. 5. [Google Scholar]
  17. Effenberg Alfred. O., Schmitz Gerd, Baumann Florian, Rosenhahn Bodo, Kroeger Daniela. (2015). SoundScript— Supporting the acquisition of character writing by multisensory integration. Open Psychology Journal 8 (2015), Nr. 1, vol. 8, n° 1, p. 230–237. [Google Scholar]
  18. Ernst Marc O., Banks Martin S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, vol. 415, p. 429. [Google Scholar]
  19. Farmer Harry, Tajadura-Jiménez Ana, Tsakiris Manos. (2012). Beyond the colour of my skin: How skin colour affects the sense of body-ownership. Consciousness and Cognition, vol. 21, n° 3, p. 1242–1256. [Google Scholar]
  20. Gallagher Maria, Dowsett Ross, Ferrè Elisa. Raffaella. (2019). Vection in virtual reality modulates vestibular-evoked myogenic potentials. European Journal of Neuroscience, vol. 50, n° 10, p. 3557–3565. [Google Scholar]
  21. Gallagher Shaun. (2005). How the Body Shapes the Mind. In How the Body Shapes the Mind. Oxford University Press. doi: 10.1093/0199271941.001.0001 [Google Scholar]
  22. Giroux Marion, Barra Julien, Barraud Pierre. Alain, Graff Christian, Guerraz Michel. (2019). From Embodiment of a Point-Light Display in Virtual Reality to Perception of One’s Own Movements. Neuroscience, vol. 416, p. 3040. [Google Scholar]
  23. Giroux Marion, Barra Julien, Graff Christian, Guerraz Michel. (2021). Multisensory integration of visual cues from first- to third-person perspective avatars in the perception of self-motion. Attention, Perception, & Psychophysics, vol. 83, p. 2634–2655. [Google Scholar]
  24. Giroux Marion, Barra Julien, Zrelli Issam. Eddine, Barraud, Pierre-Alain, Cian Corinne, Guerraz Michel. (2018). The respective contributions of visual and proprioceptive afferents to the mirror illusion in virtual reality. PLOS ONE, vol. 13, n° 8, p. e0203086. [Google Scholar]
  25. Gonzalez-Franco Mar, Peck Tabitha C. (2018). Avatar Embodiment. Towards a Standardized Questionnaire. Frontiers in Robotics and AI, 5. [Google Scholar]
  26. Guerraz Michel, Provost, S., Narison Rindra, Brugnon, A., Virolle, S., Bresciani, Jean-Pierre. (2012). Integration of visual and proprioceptive afferents in kinesthesia. Neuroscience, vol. 223, p. 258–268. [Google Scholar]
  27. Guerraz Michel, Bronstein Adolfo. M. (2008). Mechanisms underlying visually induced body sway. Neuroscience Letters, vol. 443, n° 1, p. 12–16. [Google Scholar]
  28. Harquel Sylvain, Guerraz Michel, Barraud Pierre. Alain, Cian Corinne. (2020). Modulation of alpha waves in sensorimotor cortical networks during self-motion perception evoked by different visual-vestibular conflicts. Journal of Neurophysiology, vol. 123, n° 1, p. 346–355. [Google Scholar]
  29. Head Henry, Holmes Gordon. (1911). Sensory Disturbances From Cerebral Lesions. Brain, vol. 34, n° 2-3, p. 102–254. [Google Scholar]
  30. Izumizaki Masahiko, Tsuge Mikio, Akai Lena, Proske Uwe, Homma Ikuo. (2010). The illusion of changed position and movement from vibrating one arm is altered by vision or movement of the other arm: Plasticity of vibration illusion. The Journal of Physiology, vol. 588, n° 15, p. 2789–2800. [Google Scholar]
  31. Kavounoudias Anne, Roll Jean. Pierre, Anton J.L., Nazarian, B., Roth, M., Régine, Roll. (2008). Proprio-tactile integration for kinesthetic perception: An fMRI study. Neuropsychologia, vol. 46, n° 2, p. 567–575. [Google Scholar]
  32. Kilteni Konstantina, Groten Raphaela, Slater Mel. (2012). The Sense of Embodiment in Virtual Reality. Presence: Teleoperators and Virtual Environments, vol. 21, n° 4, p. 373–387. [Google Scholar]
  33. Kilteni Konstantina, Normand Jean. Marie, Sanchez-Vives Maria V., Slater Mel. (2012). Extending Body Space in Immersive Virtual Reality: A Very Long Arm Illusion. PLOS ONE, vol. 7, n° 7, p. e40867. [Google Scholar]
  34. Kuiper Ouren X., Bos Jelte E., Diels Cyriel. (2019). Vection does not necessitate visually induced motion sickness. Displays, vol. 58, p. 82–87. [Google Scholar]
  35. Lackner James R., DiZio Paul. (1984). Some efferent and somatosensory influences on body orientation and oculomotor control. Sensory Experience, Adaptation and Perception., p. 281–301. [Google Scholar]
  36. Lin Lorraine, Jörg Sophie. (2016). Need a Hand?: How Appearance Affects the Virtual Hand Illusion. Proceedings of the ACMSymposium on Applied Perception, p. 69–76. [Google Scholar]
  37. Lira Marilia, Egito Julia. H, Dall’Agnol Patricia A, Amodio David M, Gonçalves, Óscar F, Boggio Paulo S. (2017). The influence of skin colour on the experience of ownership in the rubber hand illusion. Scientific Reports, vol. 7, n° 1, p. 15745. [Google Scholar]
  38. Lloyd Donna M. (2007). Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand. Brain and Cognition, vol. 64; n° 1, p. 104–109. [Google Scholar]
  39. Longo Matthew R, Schüür Friederike, Kammers Marjolein. P. Tsakiris Manos, Haggard Patrick. (2008). What is embodiment? A psychometric approach. Cognition, vol. 107, n° 3, p. 978–998. [Google Scholar]
  40. Lopez Christophe, Schreyer Helene. Marianne, Preuss Nora, Mast Fred W. (2012). Vestibular stimulation modifies the body schema. Neuropsychologia, vol. 50, n° 8, p. 1830–1837. [Google Scholar]
  41. Lugrin Jean. Luc, Latt Johanna, Latoschik Marc Erich. (2015). Avatar anthropomorphism and illusion of body ownership in VR. 2015 IEEE Virtual Reality (VR), p. 229–230. [Google Scholar]
  42. Ma Ke, Hommel Bernhard. (2015). The role of agency for perceived ownership in the virtual hand illusion. Consciousness and Cognition, vol. 36, p. 277–288. [Google Scholar]
  43. Maselli Antonella, Slater Mel. (2013). The building blocks of the full body ownership illusion. Frontiers in Human Neuroscience, 7. [Google Scholar]
  44. Maulucci Ruth A, Eckhouse Richard H. (2001). Retraining reaching in chronic stroke with real-time auditory feedback. NeuroRehabilitation, vol. 16, n° 3, p. 171–182. [Google Scholar]
  45. Metral Morgane, Chancel Marie, Brun Clémentine, Luyat Marion, Kavounoudias Anne, Guerraz Michel. (2015). Kinaesthetic mirror illusion and spatial congruence. Experimental Brain Research, vol. 233, n° 5, p. 1463–1470. [Google Scholar]
  46. Metral Morgane, Guerraz Michel.(2019). Fake hand in movement: Visual motion cues from the rubber hand are processed for kinesthesia. Consciousness and Cognition, vol. 73, p. 102–761. [Google Scholar]
  47. Normand Jean. Marie, Giannopoulos Elias, Spanlang Bernhard, Slater Mel. (2011). Multisensory Stimulation Can Induce an Illusion of Larger Belly Size in Immersive Virtual Reality. PLOS ONE, vol. 6, n° 1, p. e16128. [Google Scholar]
  48. Peck Tabitha C, Seinfeld Sofia, Aglioti Salvatore. M, and Slater Mel. (2013). Putting yourself in the skin of a black avatar reduces implicit racial bias. Consciousness and Cognition, vol. 22, n° 3, p. 779–787. [Google Scholar]
  49. Preston Catherine. (2013). The role of distance from the body and distance from the real hand in ownership and disownership during the rubber hand illusion. Acta Psychologica, vol. 142, n° 2, p. 177–183. [Google Scholar]
  50. Proske Uwe, Gandevia Simon.C. (2012). The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body Position and Movement, and Muscle Force. Physiological Reviews, vol. 92, n° 4, p. 1651–1697. [Google Scholar]
  51. Röder Brigitte, Pagel Birthe, Heed Tobias.(2013). The implicit use of spatial information develops later for crossmodal than for intramodal temporal processing. Cognition, vol. 126, n° 2, p. 301–306. [Google Scholar]
  52. Roll Régine, Kavounoudias Anne, Roll Jean. Pierre. (2002). Cutaneous afferents from human plantar sole contribute to body posture awareness. NeuroReport, vol. 13, n° 15, p. 19–57. [Google Scholar]
  53. Schwind Valentin, Lin Lorraine, Di Luca. Massimiliano, Jörg Sophie, Hillis James. (2018). Touch with Foreign Hands: The Effect of Virtual Hand Appearance on Visual-haptic Integration. Proceedings of the 15th ACM Symposium on Applied Perception, p. 9:1–9:8. [Google Scholar]
  54. Sforza Anna, Bufalari Ilaria, Haggard Patrick, Aglioti Salvatore. M.. (2010). My face in yours: Visuo-tactile facial stimulation influences sense of identity. Social Neuroscience, vol. 5, n° 2, p. 148–162. [Google Scholar]
  55. Shimada Sotaro, Suzuki Tatsuya, Yoda Naohiko, Hayashi Tomoya. (2014). Relationship between sensitivity to visuotactile temporal discrepancy and the rubber hand illusion. Neuroscience Research, vol. 85, p. 33–38. [Google Scholar]
  56. Slater Mel, Spanlang Bernhard, Sanchez-Vives Maria V, Blanke Olaf. (2010). First Person Experience of Body Transfer in Virtual Reality. PLOS ONE, vol. 5, n° 5, p. e10564. [Google Scholar]
  57. Tajadura-Jiménez Ana, Tsakiris Manos, Marquardt Torsten, Bianchi-Berthouze Nadia. (2015). Action sounds update the mental representation of arm dimension: Contributions of kinaesthesia and agency. Frontiers in Psychology, 6. [Google Scholar]
  58. Tardy-Gervet Marie Françoise, Gilhodes Jean Claude, Roll Jean-Pierre. (1984). Perceptual and motor effects elicited by a moving visual stimulus below the forearm: An example of segmentary vection. Behavioural Brain Research, vol. 11, n° 2, p. 171–184. [Google Scholar]
  59. Tsakiris Manos. (2008). Looking for Myself: Current Multisensory Input Alters Self-Face Recognition. PLOS ONE, vol. 3, n° 12, p. e4040. [Google Scholar]
  60. Tsakiris Manos, Carpenter Lewis, James Dafydd, Fotopoulou Aikaterini. (2010). Hands only illusion: Multisensory integration elicits sense of ownership for body parts but not for non-corporeal objects. Experimental Brain Research, vol. 204, n° 3, p. 343–352. [Google Scholar]
  61. Väljamäe Aleksander. (2009). Auditorily-induced illusory self-motion: A review. Brain Research Reviews, vol. 61, n° 2, p. 240–255. [Google Scholar]
  62. Yee Nick, Bailenson Jeremy. (2007). The Proteus Effect: The Effect of Transformed Self-Representation on Behavior. Human Communication Research, vol; 33, n° 3, p. 271–290. [Google Scholar]
  63. Zhang Jing, Hommel Bernhard. (2016). Body ownership and response to threat. Psychological Research, vol. 80, n° 6, p. 1020–1029. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.