Open Access
SHS Web Conf.
Volume 139, 2022
The 4th ETLTC International Conference on ICT Integration in Technical Education (ETLTC2022)
Article Number 03018
Number of page(s) 8
Section Topics in Computer Science
Published online 13 May 2022
  1. E. M. Real, E. Pinheiro Pimentel, L. V. de Oliveira, J. Cristina Braga and I. Stiubiener, Educational Process Mining for Verifying Student Learning Paths in an Introductory Programming Course, 2020 IEEE Frontiers in Education Conference (FIE), pp. 1-9. (2020) [Google Scholar]
  2. N. M. Ahmad, A. H. Yaacob, A. Khorram, T. JinFu, O. YiHao, and L. YewMeng, Informatics Engineering and Information Science, Informatics Eng. Inf. Sci. Commun. Comput. Inf. Sci. Ser. Springer LNCS, vol. 251, no. 1, pp. 151–162. (2011) [CrossRef] [Google Scholar]
  3. van der Aalst W. Process Mining: The Missing Link. In: Process Mining. Springer, Berlin, Heidelberg. (2016) [CrossRef] [Google Scholar]
  4. Weijters, A. J. M., W. Van Der Aalst, W. M. and Medeiros, Process mining with the heuristics miner-algorithm, Technische Universiteit Eindhoven, Tech. Rep., WP, 166, (pp 1-34). (2006) [Google Scholar]
  5. Juhaňák, Libor & Zounek, Jiří & Rohlíková, Lucie. Using process mining to analyze students' quiz-taking behavior patterns in a learning management system. Computers in Human Behavior. (2017) [Google Scholar]
  6. Etinger, Darko & Orehovački, Tihomir & Babić, Snježana. Applying Process Mining Techniques to Learning Management Systems for Educational Process Model Discovery and Analysis. (2018) [Google Scholar]
  7. S. Chanifah, R. Andreswari and R. Fauzi, "Analysis of Student Learning Pattern in Learning Management System (LMS) using Heuristic Mining a Process Mining Approach," 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA), pp. 121-125. (2021) [CrossRef] [Google Scholar]
  8. P. Ardimento, M. L. Bernardi, M. Cimitile and G. D. Ruvo, Learning analytics to improve coding abilities: a fuzzy-based process mining approach, 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1-7. (2019) [Google Scholar]
  9. Doleck, Tenzin & Jarrell, Amanda & Poitras, Eric & Chaouachi, Maher & Lajoie, Susanne. Examining Diagnosis Paths: A Process Mining Approach. 663-667. (2016) [Google Scholar]
  10. D. C. Corrales, J. C. Corrales, and A. Ledezma, How to address the data quality issues in regression models: A guided process for data cleaning, Symmetry (Basel)., vol. 10, no. 4, pp. 1–20. (2018) [Google Scholar]
  11. Ceravolo, P., Azzini, A., Damiani, E., Lazoi, M., Marra, M., & Corallo, A. Translating Process Mining Results into Intelligible Business Information. Proceedings of The 11th International Knowledge Management in Organizations Conference on The Changing Face of Knowledge Management Impacting Society - KMO ’16. (2016) [Google Scholar]
  12. I. A. Fitriansah, R. Andreswari, and M. A. Hasibuan, Business process analysis of academic information system application using process mining (case study: Final project module), Proc. 2019 5th Int. Conf. New Media Stud. CONMEDIA, pp. 189–194. (2019) [CrossRef] [Google Scholar]
  13. M. A. Ghazal, O. Ibrahim and M. A. Salama, Educational Process Mining: A Systematic Literature Review, 2017 European Conference on Electrical Engineering and Computer Science (EECS), pp. 198-203. (2017) [CrossRef] [Google Scholar]
  14. Özdağoğlu, G., Öztaş, G. Z., & Çağliyangil, M. An application framework for mining online learning processes through event-logs. Business Process Management Journal. (2018) [Google Scholar]
  15. S. J. J. Leemans, E. Poppe, and M. T. Wynn, Directly follows based process mining: Exploration & a case study, Proc. - 2019 Int. Conf. Process Mining, ICPM 2019, pp. 25–32. (2019) [Google Scholar]
  16. W. Van der Aalst, A. Adriansyah, and B. Van Dongen, Replaying history on process models for conformance checking and performance analysis, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 2, no. 2, pp. 182–192. (2012) [CrossRef] [Google Scholar]
  17. W. Intayoad, C. Kamyod and P. Temdee, Process mining application for discovering student learning paths, 2018 International Conference on Digital Arts, Media and Technology (ICDAMT), 2018, pp. 220-224. (2018) [CrossRef] [Google Scholar]
  18. Wiem Hachicha, Leila Ghorbel, Ronan Champagnat, Corinne Amel Zayani, Ikram Amous, Using Process Mining for Learning Resource Recommendation: A Moodle Case Study, Procedia Computer Science, Volume 192. (2021) [Google Scholar]
  19. P. Álvarez, J. Fabra, S. Hernández and J. Ezpeleta, Alignment of teacher's plan and students' use of LMS resources. Analysis of Moodle logs, 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET), pp. 1-8. (2016) [Google Scholar]
  20. P. Nafasa, I. Waspada, N. Bahtiar and A. Wibowo, Implementation of Alpha Miner Algorithm in Process Mining Application Development for Online Learning Activities Based on MOODLE Event Log Data, 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), pp. 1-6. (2019) [Google Scholar]
  21. C. Theptudborvomnun, W. Narksarp, P. Porouhan, P. Arpasat, S. Intarasema and W. Premchaiswadi, Analysis of Learners' Participative Behavior from Active Learning Management by Process Mining Technique, 2020 18th International Conference on ICT and Knowledge Engineering (ICT&KE), pp. 1-4. (2020) [Google Scholar]
  22. Cerezo, R., Bogarín, A., Esteban, M. et al. Process mining for self-regulated learning assessment in e-learning. J Comput High Educ 32, 74–88 (2020) [CrossRef] [Google Scholar]
  23. Bogarín, Alejandro & Cerezo, Rebeca & Romero, Cristóbal. Discovering learning processes using Inductive Miner: A case study with Learning Management Systems (LMSs). Psicothema. 30. 322-329. (2018) [Google Scholar]
  24. Balogh, Zoltan & Kuchárik, Michal. Predicting Student Grades Based on Their Usage of LMS Moodle Using Petri Nets. Applied Sciences. 9. 4211. 10.3390/app9204211. (2019) [CrossRef] [Google Scholar]
  25. Aulia, Demaspira. The Design of Exploratory and Preprocessing of Event Log Data in Online Learning Activities Based on Moodle LMS for Process Mining. (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.