Open Access
Issue |
SHS Web Conf.
Volume 139, 2022
The 4th ETLTC International Conference on ICT Integration in Technical Education (ETLTC2022)
|
|
---|---|---|
Article Number | 03027 | |
Number of page(s) | 7 | |
Section | Topics in Computer Science | |
DOI | https://doi.org/10.1051/shsconf/202213903027 | |
Published online | 13 May 2022 |
- Kaur, H., Malhi, A.K. & Pannu, H.S. Machine learning ensemble for neurological disorders. Neural Comput & Applic 32, 12697–12714 (2020). https://doi.org/10.1007/s00521-020-04720-1. [CrossRef] [Google Scholar]
- Zhang L, Wang M, Liu M and Zhang D (2020) A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis. Front. Neurosci. 14:779. DOI: 10.3389/fnins.2020.00779. [CrossRef] [Google Scholar]
- Doyle, O.M., Mehta, M.A. & Brammer, M.J. The role of machine learning in neuroimaging for drug discovery and development. Psychopharmacology 232, 4179–4189 (2015). https://doi.org/10.1007/s00213-015-3968-0 [CrossRef] [Google Scholar]
- Stam, C. Modern network science of neurological disorders. Nat Rev Neurosci 15, 683–695 (2014). https://doi.org/10.1038/nrn3801. [CrossRef] [Google Scholar]
- Ye, Jieping, Teresa Wu, Jing Li, and Kewei Chen. "Machine learning approaches for the neuroimaging study of Alzheimer's disease." Computer 44, no. 4 (2011): 99-101. [CrossRef] [Google Scholar]
- Lee Jollans, Rory Boyle, Eric Artiges, Tobias Banaschewski, Sylvane Desrivières, Antoine Grigis, Jean-Luc Martinot, Tomáš Paus, Michael N. Smolka, Henrik Walter, Gunter Schumann, Hugh Garavan, Robert Whelan, “Quantifying performance of machine learning methods for neuroimaging data”, NeuroImage, Volume 199, 2019, Pages 351-365, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2019.05.082. [CrossRef] [Google Scholar]
- Gunjan Pahuja & T. N. Nagabhushan (2021) A Comparative Study of Existing Machine Learning Approaches for Parkinson's Disease Detection, IETE Journal of Research, 67:1, 4-14, DOI: 10.1080/03772063.2018.1531730. [CrossRef] [Google Scholar]
- M. Tanveer, B. Richhariya, R. U. Khan, A. H. Rashid, P. Khanna, M. Prasad, and C. T. Lin. 2020. Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease: A Review. ACM Trans. Multimedia Comput. Commun. Appl. 16, 1s, Article 30 (January 2020), 35 pages. DOI: https://doi.org/10.1145/3344998. [Google Scholar]
- Vij, R., Arora, S. (2022). Computer Vision with Deep Learning Techniques for Neurodegenerative Diseases Analysis Using Neuroimaging: A Survey. In: Khanna, A., Gupta, D., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds) International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing, vol 1388. Springer, Singapore. https://doi.org/10.1007/978-981-16-2597-8_15. [Google Scholar]
- Brody, Herb. "Medical imaging." Nature 502.7473 (2013): S81-S81. [CrossRef] [Google Scholar]
- Smith, Kerri. "fMRI 2.0: functional magnetic resonance imaging is growing from showy adolescence into a workhorse of brain imaging.” Nature 484.7392 (2012): 24-27. [CrossRef] [Google Scholar]
- Sonka, Milan, Vaclav Hlavac, and Roger Boyle. Image processing, analysis, and machine vision. Cengage Learning, 2014. [Google Scholar]
- Mirzaei, Golrokh, and Hojjat Adeli. "Machine learning techniques for the diagnosis of Alzheimer’s disease, mild cognitive disorder, and other types of dementia." Biomedical Signal Processing and Control 72 (2022): 103293. [CrossRef] [Google Scholar]
- Zhang, J. Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson’s disease. npj Parkinsons Dis. 8, 13 (2022). https://doi.org/10.1038/s41531-021-00266-8. [Google Scholar]
- J. Chandra, Madhavi Rangaswamy, Bonny Banerjee, Ambar Prajapati, Zahid Akhtar, Kenneth Sakauye, Alwin Joseph, “Applications of artificial intelligence to neurological disorders: current technologies and open problems”, Editor(s): Anitha S. Pillai, Bindu Menon, Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence, Academic Press, 2022, Pages 243-272, ISBN 9780323900379, https://doi.org/10.1016/B978-0-323-90037-9.00005-9. [CrossRef] [Google Scholar]
- Rahul Sharma, Tripti Goel, M. Tanveer, R. Murugan, FDN-ADNet: Fuzzy LS-TWSVM based deep learning network for prognosis of Alzheimer’s disease using the sagittal plane of MRI scans, Applied Soft Computing, Volume 115, 2022, 108099, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2021.108099. [CrossRef] [Google Scholar]
- Sharma, Preeti and Devershi Pallavi Bhatt. "Importance of Deep Learning Models in the Medical Imaging Field." Approaches and Applications of Deep Learning in Virtual Medical Care, edited by Noor Zaman, et al., IGI Global, 2022, pp. 1-23. https://doi.org/10.4018/978-1-7998-8929-8.ch001. [Google Scholar]
- Kernbach, J.M., Ort, J., Hakvoort, K., Clusmann, H., Neuloh, G., Delev, D. (2022). Introduction to Machine Learning in Neuroimaging. In: Staartjes, V.E., Regli, L., Serra, C. (eds) Machine Learning in Clinical Neuroscience. Acta Neurochirurgica Supplement, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-030-85292-4_16. [Google Scholar]
- Sharda, Megha, and Anya Chakraborty. "Predictive Modeling, Machine Learning, and Neuroscience." (2022). [Google Scholar]
- Peide, Li, et al. "Coupled Support Tensor Machine Classification for Multimodal Neuroimaging Data." arXiv preprint arXiv:2201.07683 (2022). [Google Scholar]
- Ansingkar, N. P., Rita Patil, and P. D. Deshmukh. "An efficient multi-class Alzheimer detection using hybrid equilibrium optimizer with capsule autoencoder." Multimedia Tools and Applications (2022): 1-32. [Google Scholar]
- Kaul, Deeksha, Harika Raju, and B. K. Tripathy. "Deep Learning in Healthcare." Deep Learning in Data Analytics. Springer, Cham, 2022. 97-115. [CrossRef] [Google Scholar]
- Aslan, Zülfikar, and Mehmet Akin. "A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals." Physical and Engineering Sciences in Medicine 45.1 (2022): 83-96. [CrossRef] [Google Scholar]
- Kaka, Jhansi Rani, and K. Satya Prasad. "Differential Evolution and Multiclass Support Vector Machine for Alzheimer’s Classification." Security and Communication Networks 2022 (2022). [Google Scholar]
- Sharma, Deepak Kumar, et al. "Deep learning applications for disease diagnosis." Deep Learning for Medical Applications with Unique Data. Academic Press, 2022. 31-51. [CrossRef] [Google Scholar]
- Mannil, Manoj, et al. "Foundations of Lesion Detection Using Machine Learning in Clinical Neuroimaging." Machine Learning in Clinical Neuroscience. Springer, Cham, 2022. 171-182. [Google Scholar]
- Biessmann F, Plis S, Meinecke FC, Eichele T, Müller KR. Analysis of multimodal neuroimaging data. IEEE Rev Biomed Eng. 2011;4:26-58. doi: 10.1109/RBME.2011.2170675. PMID: 22273790. [CrossRef] [Google Scholar]
- S. Liu et al., "Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer's Disease," in IEEE Transactions on Biomedical Engineering, vol. 62, no. 4, pp. 1132-1140, April 2015, doi: 10.1109/TBME.2014.2372011. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.