Open Access
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 01001
Number of page(s) 5
Section Research on Bioethics and Medical Science and Technology Ethics
Published online 26 August 2022
  1. Hess AR, Seftor EA, Gruman LM, et al. VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry [J]. Cancer Biol Ther, 2006, 5(2):228-233. [CrossRef] [Google Scholar]
  2. Hess AR, Hendrix MJ. Focal adhesion kinase signaling and the aggressive melanoma phenotype [J]. Cell Cycle, 2006, 5(5):478-480. [CrossRef] [Google Scholar]
  3. Hess AR, Seftor EA, Seftor RE, et al. Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase (MMP) and MMP-2 activity during melanoma cell vasculogenic mimicry [J]. Cancer Res, 2003, 63(16):4757-4762. [Google Scholar]
  4. Ye F, Gao Q, Cai MJ. Therapeutic targets of EGFR in malignant gliomas [J]. Expert Opin Ther Targets, 2010; 14(3): 303-316. [CrossRef] [Google Scholar]
  5. Xu P, Zhang A, Jiang R, et al. The different role of Notch1 and Notch2 in astrocytic gliomas [J]. PLoS One, 2013;8(1):e53654. [CrossRef] [Google Scholar]
  6. Zhang X, Song Q, Wei C, et al. LRIG1 inhibits hypoxia-induced formation of angiogenic mimics through inhibition of the EGFR/PI3K /AKT pathway and epithelial-mesenchymal transition in human glioma SHG-44 cells [J]. 631-41. [Google Scholar]
  7. Li S, Meng, Guan Z, et al. The hypoxia-related signaling pathways of vasculogenic mimic in tumor treatment [J]. Biomed Pharmacother, 2016;80:127-35. [CrossRef] [Google Scholar]
  8. Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev, 2007, 26(2): 281-290. [CrossRef] [Google Scholar]
  9. Zhuge YL. Advances in the study of vascularization simulation. China Med Pharm, 2011, 1(20):36-38. [Google Scholar]
  10. Karroum A, Mirshahi P, Faussat AM, et al. Tubular network formation by adriamycin-resistant MCF-7 breast cancer cells is closely linked to MMP-9 and VEGFR-2 / VEGFR-3 over-expression [J]. Eur J Pharmacol, 2012, 685(1-3):1-7. [CrossRef] [Google Scholar]
  11. Liu QY, Lian ZL. Study on the dual pathway of breast cancer angiogenesis and its related factors[J]. China Pharmaceutical Biotechnology, 2015, 10(05):453-459. [Google Scholar]
  12. Park S, Kim Y, Kim Y, et al. Frondoside A inhibits TPA-induced activation of MMP-9 in human breast cancer cells through NF-κB and AP-1 signaling and has anti-invasive effects [J]. Int J Oncol, 2012; 41(3) :933-40. [CrossRef] [Google Scholar]
  13. Chen Yuxiao, Ni Chengming, Zhang Jinmeng, Sun Ruifeng, Chen Ting, Zhang Zhixuan, Gong Haifeng, Yang Wei, Zhao Han, Cai Weiwei, Qiu Liying, Feng Lei. Advances in the molecular mechanism of angiogenesis mimicry in breast cancer[J]. Chinese Journal of Breast Diseases (Electronic Edition), 2017, 11(02):97-101. [Google Scholar]
  14. Tong DL, Liu Q L, Wang L A, Xie Q B, Pang J, Huang Y Q, Wang L F, Liu G L, Zhang D Z, Lan W H, Jiang J. Role of COX2/PGE2/EP axis in therapeutic drug resistance[J]. Cancer metastasis reviews, 2018, 37(23). [Google Scholar]
  15. Ravi M, Tentu S, Baskar G, et al Molecular mechanism of anticancer activity of phycocyanidins in triple-negative breast cancer cells [J]. BMC Cancer, 2015, 15: 768. [CrossRef] [Google Scholar]
  16. Zhang LW. Relationship between changes in serum interleukin-8, cyclooxygenase-2, and vascular endothelial growth factor-a levels and postoperative recurrence in patients with triple-negative breast cancer and their clinical significance [J]. Henan Medical Research, 2021, 30(04):659-661. [Google Scholar]
  17. Hlubek F, Jung A, Kotzor N, et al. Expression of the invasion factor Laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res. 2001, 61: 8089-8093. [Google Scholar]
  18. Qi L, Song W, Liu Z, et al. Wnt3a promotes the vasculogenic mimicry formation of colon cancer via Wnt / β-catenin signaling [J]. Int J Mol Sci, 2015, 16(8): 18564-18579. [CrossRef] [Google Scholar]
  19. Vincent T, Neve EP, Johnson JR, Kuka-lev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, Crystal RG, de Herreros AG, Moustakas A, Pettersson RF, Fuxe J. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 2009; 11: 943-950 [CrossRef] [Google Scholar]
  20. Secker GA, Shortt AJ, Sampson E, Sch-warz QP, Schultz GS, Daniels JT. TGF beta stimulated reepithelialization is regulated by CTGF and Ras/MEK/ERK signaling. Exp Cell Res 2008; 314: 131-142 [CrossRef] [Google Scholar]
  21. Gong Winche. The role of Nodal signaling in angiogenic mimetic formation and regulation of breast cancer tumor stem cell phenotype in breast cancer[D]. Tianjin Medical University, 2017. [Google Scholar]
  22. Zhang Huizheng. SND1 affects the phenotype of breast cancer cells by influencing the expression of Ecadherin[D]. Tianjin Medical University, 2018. [Google Scholar]
  23. Casas E, Kim J, Bendesky A, et al. Snail2 is an essential mediator of Twist1 ⁃ induced epithelialmesenchymal transition and metastasis [J]. Cancer Res, 2011, 71 (1):245-254 [CrossRef] [Google Scholar]
  24. Guarnieri A, Neelakantan D, et al. TWIST1 induced miR ⁃ 424 reversibly drives mesenchymal programming while inhibiting tumor initiation [J]. Cancer Res, 2015, 75 (9):1908-1921. [Google Scholar]
  25. Fu J, Zhang L, He T, et al. TWIST represses estrogen receptor ⁃ alpha expression by recruiting the NuRD protein complex in breast cancer cells [J]. Int J Biol Sci, 2012, 8(4): 522-532 [CrossRef] [Google Scholar]
  26. Liu TJ, Sun BC, Zhao XL, et al. CD133 +cells with cancer stem cell characteristics associated with vasculogenic mimicry in triple-negative breast cancer[J]. Oncogene, 2013, 32(5):544-553. [CrossRef] [Google Scholar]
  27. Liu Ga-Meng, Sun Preservation, Sun Hui-Zhi, Zhang Dan-Fang, Lin Xian, Li Yan-Lei, Gou Qiang, Dong Xue-Yi, Liu Fang. Effects of triple-negative breast cancer stem-like cells on EMT development and their biological behavior in mice[J]. China Cancer Clinics, 2016, 43(08):324-328. [Google Scholar]
  28. St John, M. A. (2015). Inflammatory mediators drive metastasis and drug resistance in head and neck squamous cell carcinoma. Laryngoscope, 125(Suppl3), S1-SIl. [CrossRef] [Google Scholar]
  29. Shao Shan, An Canali, Zhao Lin, Luo Mna, Ning Qian, Meng DU, Zhao XH, Lei J. Notch1dependent Slug regulates the epithelial-mesenchymal transition process in breast cancer[J]. Journal of Xi’an Jiaotong University (Medical Edition), 2020, 41(06): 881-887. [Google Scholar]
  30. Wu D P, Wu Huan L, Zheng W H, Zheng S M, Xie W R, Xu L. IL-6 regulates miR-204 and Notch1 to promote proliferation, migration and invasion of breast cancer cells[J]. Modern Immunology, 2021, 41(05):380-385+406. [Google Scholar]
  31. Choi S, Yu J, Parka, et al. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling[J]. Sci Rep, 2019, 9(1): 11724. [CrossRef] [Google Scholar]
  32. Liu, S.; Ni, C.; Zhang, D.; Sun, H.; Dong, X.; Che, N.; Liang, X.; Chen, C.; Liu, F.; Bai, J.; et al. S1PR1 regulates the switch of two angiogenic modes by VEcadherin phosphorylation in breast cancer. Cell Death Dis. 2019, 10, 200. [CrossRef] [Google Scholar]
  33. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesample J, Weinberg RA. miR-9, a MYC/MYCNactivated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12: 247-256 [CrossRef] [Google Scholar]
  34. Sengodan, S.K.; Nadhan, R.; Nair, R.S.; Hemalatha, S.K.; Somasundaram, V.; Su-shama, R.R.; Rajan, A.; Latha, N.R.; Varghese, G.R.; Thankappan, R.K.; et al. BRCA1 regulation on [Google Scholar]
  35. Yuri, T.; Kinoshita, Y.; Emoto, Y.; Yoshizawa, K.; Tsubura, A. Human chorionic-gonadotropin suppresses human breast cancer cell growth directly via p53-mediated mitochondrial apoptotic pathway and indirectly via ovarian steroid secretion. Anticancer Res. 2014, 34, 1347–1354. [Google Scholar]
  36. Iezzi, M.; Quaglino, E.; Cappello, P.; Toto, V.; Sabatini, F.; Curcio, C.; Garotta, G.; Musiani, P.; Cavallo, F. HCG hastens both the development of mammary carcinoma and the metastatization of HCG/LH and ERBB-2 receptor-positive cells in mice. Int. J. Immunopathol. Pharmacol. 2011, 24, 621–630. [CrossRef] [Google Scholar]
  37. Laederich, M.B.; Funes-Duran, M.; Yen, L.; Ingalls, E.; Wu, X.; Carraway, K.L.3rd,; Sweeney, C. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J. Biol. Chem. 2004, 279, 47050–47056. [CrossRef] [Google Scholar]
  38. Miller, J.K.; Shattuck, D.L.; Ingalla, E.Q.; Yen, L.; Borowsky, A.D.; Young, L.J.; Cardiff, R.D.; Carraway, K.L.3rd,; Sweeney, C. Suppression of the negative regulator LRIG1 contributes to ErbB2 overexpression in breast cancer. Cancer Res. 2008, 68, 8286–8294. [CrossRef] [Google Scholar]
  39. Krig, S.R.; Frieze, S.; Simion, C.; Mill-er, J.K.; Fry, W.H.; Rafidi, H.; Kotelaw-ala, L.; Qi, L.; Griffith, O.L.; Gray, J.W.; et al. Lrig1 is an estrogen-regulated growth suppressor and correlates with longer relapsefree survival in ERα-positive breast cancer. Mol. Cancer Res. 2011, 9, 1406–1417. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.