Open Access
Issue
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 01007
Number of page(s) 6
Section Research on Bioethics and Medical Science and Technology Ethics
DOI https://doi.org/10.1051/shsconf/202214401007
Published online 26 August 2022
  1. Jabbour, E., Cortes, J. E., Giles, F. J., O’Brien, S., & Kantarjian, H. M. (2007). Current and emerging treatment options in chronic myeloid leukemia. Cancer, 109(11), 2171–2181. https://doi.org/10.1002/CNCR.22661. [CrossRef] [Google Scholar]
  2. Chennamadhavuni A, Lyengar V, Shimanovsky A. Leukemia. [Updated 2021 Nov 21]. In: StatPearls [Internet]. TreasureIsland(FL):StatPearlsPublishing;2022Jan-. Availablefrom:https://www.ncbi.nlm.nih.gov/books/NBK56049/. [Google Scholar]
  3. Man, L. M., Morris, A. L., & Keng, M. (2017). New Therapeutic Strategies in Acute Lymphocytic Leukemia. Current Hematologic Malignancy Reports 2017 12:3, 12(3), 197–206. https://doi.org/10.1007/S11899-017-0380-3. [CrossRef] [Google Scholar]
  4. Kantarjian, H., Stein, A., Gökbuget, N., Fielding, A. K., Schuh, A. C., Ribera, J.-M., Wei, A., Dombret, H., Foà, R., Bassan, R., Arslan, Ö., Sanz, M. A., Bergeron, J., Demirkan, F., Lech-Maranda, E., Rambaldi, A., Thomas, X., Horst, H.-A., Brüggemann, M., … Topp, M. S. (2017). Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. New England Journal of Medicine, 376(9), 836–847. https://doi.org/10.1056/NEJMOA1609783/SUPPL_FILE/NEJMOA1609783_DISCLOSURES.PDF. [CrossRef] [Google Scholar]
  5. Terwilliger, T., & Abdul-Hay, M. (2017). Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer Journal 2017 7:6, 7(6), e577–e577. https://doi.org/10.1038/bcj.2017.53. [CrossRef] [Google Scholar]
  6. Lanza, F., Maffini, E., Rondoni, M., Massari, E., Faini, A. C., & Malavasi, F. (2020). CD22 Expression in B-Cell Acute Lymphoblastic Leukemia: Biological Significance and Implications for Inotuzumab Therapy in Adults. Cancers 2020, Vol. 12, Page 303, 12(2), 303. https://doi.org/10.3390/CANCERS12020303. [Google Scholar]
  7. DeAngelo, D. J., Stock, W., Stein, A. S., Shustov, A., Liedtke, M., Schiffer, C. A., Vandendries, E., Liau, K., Ananthakrishnan, R., Boni, J., Douglas Laird, A., Fostvedt, L., Kantarjian, H. M., & Advani, A. S. (2017). Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Advances, 1(15), 1167–1180. https://doi.org/10.1182/BLOODADVANCES.2016001925. [CrossRef] [Google Scholar]
  8. Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., Sommermeyer, D., Melville, K., Pender, B., Budiarto, T. M., Robinson, E., Steevens, N. N., Chaney, C., Soma, L., Chen, X., Yeung, C., Wood, B., Li, D., Cao, J., … Maloney, D. G. (2016). CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. The Journal of Clinical Investigation, 126(6), 2123–2138. https://doi.org/10.1172/JCI85309. [CrossRef] [Google Scholar]
  9. Dai, H., Wang, Y., Lu, X., & Han, W. (2016). Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. JNCI: Journal of the National Cancer Institute, 108(7), 439. https://doi.org/10.1093/JNCI/DJV439. [CrossRef] [Google Scholar]
  10. Pan, J., Niu, Q., Deng, B., Liu, S., Wu, T., Gao, Z., Liu, Z., Zhang, Y., Qu, X., Zhang, Y., Liu, S., Ling, Z., Lin, Y., Zhao, Y., Song, Y., Tan, X., Zhang, Y., Li, Z., Yin, Z., … Tong, C. (2019). CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia. Leukemia 2019 33:12, 33(12), 2854–2866. https://doi.org/10.1038/s41375019-0488-7. [Google Scholar]
  11. Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S. S., Stefanski, J., BorquezOjeda, O., Olszewska, M., Qu, J., Wasielewska, T., He, Q., Fink, M., Shinglot, H., Youssif, M., Satter, M., Wang, Y., Hosey, J., … Brentjens, R. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Science Translational Medicine, 6(224). https://doi.org/10.1126/SCITRANSLMED.3008226/SUPPL_FILE/6-224RA25_SM.PDF. [CrossRef] [Google Scholar]
  12. Schmiegelow, K., Müller, K., Mogensen, S. S., Mogensen, P. R., Wolthers, B. O., Stoltze, U. K., Tuckuviene, R., & Frandsen, T. (2017). Noninfectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy. F1000Research, 6. https://doi.org/10.12688/F1000RESEARCH.10768.1. [Google Scholar]
  13. de Kouchkovsky, I., & Abdul-Hay, M. (2016). Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer Journal 2016 6:7, 6(7), e441–e441. https://doi.org/10.1038/bcj.2016.50. [CrossRef] [Google Scholar]
  14. Lam, S. S. Y., & Leung, A. Y. H. (2020). Overcoming Resistance to FLT3 Inhibitors in the Treatment of FLT3-Mutated AML. International Journal of Molecular Sciences 2020, Vol. 21, Page 1537, 21(4), 1537. https://doi.org/10.3390/IJMS21041537. [CrossRef] [Google Scholar]
  15. Vago, L., & Gojo, I. (2020). Immune escape and immunotherapy of acute myeloid leukemia. The Journal of Clinical Investigation, 130(4), 1552–1564. https://doi.org/10.1172/JCI129204. [CrossRef] [Google Scholar]
  16. Tabata, R., Chi, S., Yuda, J., & Minami, Y. (2021). Emerging Immunotherapy for Acute Myeloid Leukemia. International Journal of Molecular Sciences 2021, Vol. 22, Page 1944, 22(4), 1944. https://doi.org/10.3390/IJMS22041944. [CrossRef] [Google Scholar]
  17. Qin, H., Yang, L., Chukinas, J. A., Shah, N., Tarun, S., Pouzolles, M., Chien, C. D., Niswander, L. M., Welch, A. R., Taylor, N., Tasian, S. K., & Fry, T. J. (2021). Original research: Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design. Journal for Immunotherapy of Cancer, 9(9), 3149. https://doi.org/10.1136/JITC-2021-003149. [Google Scholar]
  18. Tang, X., Yang, L., Li, Z., Nalin, A. P., Dai, H., Xu, T., Yin, J., You, F., Zhu, M., Shen, W., Chen, G., Zhu, X., Wu, D., & Yu, J. (2018). Erratum: First-inman clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. American Journal of Cancer Research, 8(9), 1899–1899. https://europepmc.org/articles/PMC6176185. [Google Scholar]
  19. Bonifant, C. L., Szoor, A., Torres, D., Joseph, N., Velasquez, M. P., Iwahori, K., Gaikwad, A., Nguyen, P., Arber, C., Song, X. T., Redell, M., & Gottschalk, S. (2016). CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia. Molecular Therapy, 24(9), 1615–1626. https://doi.org/10.1038/MT.2016.116. [CrossRef] [Google Scholar]
  20. Ma, J., & Ge, Z. (2021). Recent advances of targeted therapy in relapsed/refractory acute myeloid leukemia. Bosnian Journal of Basic Medical Sciences, 21(4), 409–421. https://doi.org/10.17305/bjbms.2020.5485. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.