Open Access
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 01012
Number of page(s) 8
Section Research on Bioethics and Medical Science and Technology Ethics
Published online 26 August 2022
  1. IUCN. 2021. The IUCN Red List of Threatened Species. Version 2021-3. Accessed on [day month year]. [Google Scholar]
  2. Wada, Hirofumi & Matsumoto, Daichi. (2018). Twisting Growth in Plant Roots. 10.1007/978-3-31979099-2_6. [Google Scholar]
  3. Said Attiaal Hagrey, Geophysical imaging of rootzone, trunk, and moisture heterogeneity, Journal of Experimental Botany, Volume 58, Issue 4, March 2007, Pages 839–854, [CrossRef] [Google Scholar]
  4. Li Feng-ying, Tang Shao-Qing, Li Xian-Kun. Anatomical Structure and Development of Aerial Adventitious Roots of Taxus Chinensis Var. Mairei [J] Natural Science Journal of Hainan University. 2007(02): 152-155. DOI:10.15886/j.cnki.hdxbzkb.2007.02.010. [Google Scholar]
  5. Ennos, A. R. “The function and formation of buttresses.” Trends in Ecology & Evolution 8.10 (1993): 350-351. [CrossRef] [Google Scholar]
  6. Mirabet, Vincent, et al. “The role of mechanical forces in plant morphogenesis.” Annual review of plant biology 62 (2011): 365-385. [CrossRef] [Google Scholar]
  7. Savaldi-Goldstein, Sigal, et al. “The epidermis both drives and restricts plant shoot growth.” Nature, vol. 446, no. 7132, 8 Mar. 2007, pp. 199+. Gale Academic OneFile, 1d75a. Accessed 22 Mar. 2022. [CrossRef] [Google Scholar]
  8. Savaldi-Goldstein, Sigal and Joanne Chory. “Growth coordination and the shoot epidermis.” Current opinion in plant biology 11 1 (2008): 42-8. [CrossRef] [Google Scholar]
  9. Salmén, Lennart. (2018). Wood Cell Wall Structure and Organisation in Relation to Mechanics. 10.1007/978-3-319-79099-2_1. [Google Scholar]
  10. Côté, W. A. Ultrastructure—Critical domain for wood behavior. Wood Sci. Technol. 1981, 15, 1-29. [Google Scholar]
  11. Li Feng-Ying, Liang Shi-Chu. Anatomical structure and environmental adaptability of Taxus wallichiana var.mairei in Yuanbaoshan[J]. Guihaia, 2013, (2):219224. [Google Scholar]
  12. Sharon, E., Sahaf, M. (2018). The Mechanics of Leaf Growth on Large Scales. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. [Google Scholar]
  13. Bohr, T., Rademaker, H., Schulz, A. (2018). Water Motion and Sugar Translocation in Leaves. In: Geitmann, A., Gril, J. (eds) Plant Biomechanics. Springer, Cham. [Google Scholar]
  14. Li Xiao-Wei, Jing Xiu-Li, Liang Yan-sheng. Observation of Dissecting Constructures of Taxus mariei in Two Areas[J] Journal of Henan Institute of Science and Technology (Natural Sciences Edition). 2007(03) Page:38-41 [Google Scholar]
  15. Rademaker, Hanna, et al. “Sugar export limits size of conifer needles.” Physical Review E 95.4 (2017): 042402. [CrossRef] [Google Scholar]
  16. Anja Geitmann, Karl Niklas, Thomas Speck, Plant biomechanics in the 21st century, Journal of Experimental Botany, Volume 70, Issue 14, 1 July 2019, Pages 3435–3438 [CrossRef] [Google Scholar]
  17. Speck, Thomas & Bold, Georg & Masselter, Tom & Poppinga, Simon & Schmier, Stefanie & Thielen, Marc & Speck, Olga. (2018). Biomechanics and Functional Morphology of Plants—Inspiration for Biomimetic Materials and Structures. 10.1007/978-3319-79099-2_18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.