Open Access
Issue
SHS Web Conf.
Volume 144, 2022
2022 International Conference on Science and Technology Ethics and Human Future (STEHF 2022)
Article Number 03011
Number of page(s) 5
Section Application of Artificial Intelligence Technology and Machine Learning Algorithms
DOI https://doi.org/10.1051/shsconf/202214403011
Published online 26 August 2022
  1. Lai, K., & Yanushkevich, S. N. (2018). CNN+RNN depth and skeleton based dynamic hand gesture recognition. 2018 24th International Conference on Pattern Recognition (ICPR). https://doi.org/10.1109/icpr.2018.8545718 [Google Scholar]
  2. He, X., & Zhang, J. (2020). Design and implementation of number gesture recognition system based on Kinect. 2020 39th Chinese Control Conference (CCC). https://doi.org/10.23919/ccc50068.2020.9189566 [Google Scholar]
  3. Yang, F., Sun, Q., Jin, H., & Zhou, Z. (2020). Superpixel segmentation with fully Convolutional networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.2020.01398 [Google Scholar]
  4. De Oliveira Junior, L. A., Medeiros, H. R., Macedo, D., Zanchettin, C., Oliveira, A. L., & Ludermir, T. (2018). SegNetRes-CRF: A deep Convolutional encoder-decoder architecture for semantic image segmentation. 2018 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn.2018.8489376 [Google Scholar]
  5. Reyes, M., Dominguez, G., & Escalera, S. (2011). Featureweighting in dynamic timewarping for gesture recognition in depth data. 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). https://doi.org/10.1109/iccvw.2011.6130384 [Google Scholar]
  6. Simo-Serra, E., Ramisa, A., Alenya, G., Torras, C., & Moreno-Noguer, F. (2012). Single image 3D human pose estimation from noisy observations. 2012 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2012.6247988 [Google Scholar]
  7. Sinha, A., Choi, C., & Ramani, K. (2016). DeepHand: Robust hand pose estimation by completing a matrix imputed with deep features. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.450 [Google Scholar]
  8. Zhang, X., Wang, J., Wang, X., & Ma, X. (2016). Improvement of dynamic hand gesture recognition based on HMM algorithm. 2016 International Conference on Information System and Artificial Intelligence (ISAI). https://doi.org/10.1109/isai.2016.0091 [Google Scholar]
  9. Cicirelli, G., & D’Orazio, T. (2017). Gesture recognition by using depth data: Comparison of different methodologies. Motion Tracking and Gesture Recognition. https://doi.org/10.5772/68118 [Google Scholar]
  10. Cui, H., & Wang, Y. (2020). Research on gesture recognition method based on computer vision technology. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). https://doi.org/10.1109/cibda50819.2020.00087 [Google Scholar]
  11. Zhao, D., Liu, Y., & Li, G. (2018). Skeleton-based dynamic hand gesture recognition using 3D depth data. Electronic Imaging, 30(18), 4611-4618. https://doi.org/10.2352/issn.24701173.2018.18.3dipm-461 [Google Scholar]
  12. Kumar, V., Namboodiri, A., Paluri, M., & Jawahar, C. V. (2017). Pose-aware person recognition. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.719 [Google Scholar]
  13. Martínez-Hinarejos, C., & Parcheta, Z. (2017). Spanish sign language recognition with different topology hidden Markov models. Interspeech 2017. https://doi.org/10.21437/interspeech.2017-275 [Google Scholar]
  14. Zhang, C., & Tian, Y. (2013). Edge enhanced depth motion map for dynamic hand gesture recognition. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. https://doi.org/10.1109/cvprw.2013.80 [Google Scholar]
  15. Zhang, Q., & Deng, F. (2017). Dynamic gesture recognition based on LeapMotion and HMM-CART model. Journal of Physics: Conference Series, 910, 012037. https://doi.org/10.1088/17426596/910/1/012037 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.