Open Access
Issue
SHS Web Conf.
Volume 149, 2022
International Conference on Social Science 2022 “Integrating Social Science Innovations on Post Pandemic Through Society 5.0” (ICSS 2022)
Article Number 01007
Number of page(s) 6
Section Education and Digital Learning
DOI https://doi.org/10.1051/shsconf/202214901007
Published online 18 November 2022
  1. B. C. Mondal and A. Chakraborty, Misconceptions in Chemistry: Its identification and remedial measures, Saarbrücken: Lambert Academic Publishing, (2013). [Google Scholar]
  2. H. Karous, B. Nihant and B. Leyh, “Learning Chemical Kinetics at Secondary School Level: Misconceptions And Alternative Approach,” in European Science Education Research Association, Dublin, (2017). [Google Scholar]
  3. H. Verkade, T. D. Mulhern, J. M. Lodge, K. Elliott, S. Croper, B. I. Rubinstein, A. Espinosa, Livett, L. Dooley, S. Frankland and R. Mulder, Misconception as Trigger for Enhancing Student Learning in Higher Education: A Handbook for Educators, Melbourne: University of Melbourne, (2017). [Google Scholar]
  4. İ. Bilgin, E. Uzuntiryaki and Ö. Geban, “Student’s Misconceptions on the Concept of Chemical Equilibrium,” Education and Science, vol. 28, no. 127, pp. 10–17, (2003). [Google Scholar]
  5. H. Tümay, “Reconsidering learning difficulties and misconceptions in chemistry: Emergence in chemistry and its implications for chemical education,” Chemistry Education Research and Practice, vol. 17, no. 2, pp. 229–245, (2016). [CrossRef] [Google Scholar]
  6. J. Jusniar, E. Effendy, E. Budiasih and S. Sutrisno, “Misconceptions in Rate of Reaction and their Impact on Misconceptions in Chemical Equilibrium,” European Journal of Educational Research, vol. 9, no. 4, pp. 1405 – 1423, (2020). [CrossRef] [Google Scholar]
  7. B. Sreenivasulu and R. Subramaniam, “University Students’ Understanding of Chemical Thermodynamics,” International Journal of Science Education, vol. 35, no. 4, pp. 601–635, (2013). [CrossRef] [Google Scholar]
  8. B. Yonata, Suyono and U. Azizah, “Four-Tier Diagnostic Test on Chemical Kinetics Concepts for Undergraduate Students,” in International Joint Conference on Science and Engineering 2021 (IJCSE 2021), Surabaya, (2021). [Google Scholar]
  9. E. Adadan and F. Savasci, “An analysis of 16–17- year-old students’ understanding of solution chemistry concepts using a two-tier diagnostic instrument,” International Journal of Science Education, vol. 34, no. 4, pp. 513–544, (2012). [CrossRef] [Google Scholar]
  10. J. Bentahar, B. Moulin and M. Bélanger, “A taxonomy of argumentation models used for knowledge representation.,” Artificial Intelligence Review, vol. 33, no. -, p. :211–259, (2010). [CrossRef] [Google Scholar]
  11. F. H. v. Eemeren and R. Grootendorst, A Systematic Theory of Argumentation The Pragma-Dialectical Approach, Cambridge: Cambridge University Press, (2004). [Google Scholar]
  12. S. Cottrell, Critical Thinking Skills, Developing Effective Analysis and Argument, New York: Palcrave MacMillan, (2005). [Google Scholar]
  13. A. Moon, C. Stanford, R. Coleb and M. Towns., “The Nature of Students’ Chemical Reasoning Employed in Scientific Argumentation in Physical Chemistry,” Chemistry Education Research and Practice, vol. 17, no. 2, pp. 353–364, (2016). [CrossRef] [Google Scholar]
  14. S. Erduran, Argumentation in Science Education: Perspectives from Classroom Based Research, New York: Springer Dordrect Heidelberg., (2008). [Google Scholar]
  15. S. J. Barkman, A Field Guide to Designing Quantitative Instruments to Measure Program Impact, West Lafayette: Purdue Extension, (2002). [Google Scholar]
  16. L. R. Aiken, “Three Coefficients for Analyzing the Reliability and Validity of Ratings,” Educational and Psychological Measurement, vol. 45, no. 1, pp. 131–142, (1985). [CrossRef] [Google Scholar]
  17. T. M. Haladyna and M. C. Rodriguez, Developing and validating test items, New York: Routledge, (2013). [CrossRef] [Google Scholar]
  18. S. Lane, M. R. Raymond, T. M. Haladyna and S. M. Downing, “Test Development Process,” in Handbook of Test Development, Second edition, New York, Routledge, (2016), pp. 1–18. [Google Scholar]
  19. K. Fahy, “Writing for publication: Argument and evidence,” Women and Birth, Vols. -, no. -, pp. 1–5, (2008). [Google Scholar]
  20. S. Finkenstaedt-Quinn, A. Halim, G. Kasner, C. Wilhelm, A. Moon, A. Gere and G. Shultz, “Capturing Student Conceptions of Thermodynamics and Kinetics Using Writing,” Chemistry Education Research and Practice, vol. 21, no. 3, pp. 922–939, (2020). [CrossRef] [Google Scholar]
  21. S. Erduran, “Chapter 1:Argumentation in Chemistry Education: An Overview,,” in Argumentation in Chemistry Education: Research, Policy and Practice, London, Royal Society of Chemistry, (2019), pp. 1–10. [Google Scholar]
  22. D. Walton, Fundamentals of Critical Argumentation, Cambridge: Cambridge University Press, (2006). [Google Scholar]
  23. C. Swatridge, The Oxford Guide to Effective Argument and Critical Thinking, New York: Oxford University Press, (2014). [Google Scholar]
  24. J. Y. Lau, An Introduction to Critical Thinking and Creativity; Think More, think better, New Jersey: John Wiley & Sons, Inc., (2011). [CrossRef] [Google Scholar]
  25. S. J. Petriti, C. Kelley and V. Talanquer, “Analysis of factors that affect the nature and quality of student laboratory argumentation,” Chemistry Education Research and Practice, vol. 23, no. 1, pp. 257–274, (2022). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.