Open Access
SHS Web Conf.
Volume 155, 2023
2022 2nd International Conference on Social Development and Media Communication (SDMC 2022)
Article Number 02008
Number of page(s) 10
Section Media Communication and Analysis of Social Hot News
Published online 12 January 2023
  1. Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In Action Control. In: Julius, K., Jurgen, B. (Eds.), SSSP Springer Series in Social Psychology, Springer, Berlin, Heidelberg. pp. 11–39. [CrossRef] [Google Scholar]
  2. Ajzen, I. (1991). Theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211. [CrossRef] [Google Scholar]
  3. Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes. Mahwah, NJ: Erlbaum Publishers. pp. 173–221. [Google Scholar]
  4. Babin, Barry J., Darden William R., and Mitch Griffin. (1994). Work and/or Fun: Measuring Hedonic and Utilitarian Shopping Value. Journal of 86 Consumer Research 20(4), 644. [CrossRef] [Google Scholar]
  5. Battacherjee, A. (2000), Acceptance of e-commerce services: the case of electronic brokerages, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 30 No. 4, pp. 411–20. [CrossRef] [Google Scholar]
  6. Benbasat, I., Barki, H., (2007). Quo vadis, TAM? Journal of the Association for Information Systems 8 (4), 211–218. [CrossRef] [Google Scholar]
  7. Cai, J., Wohn, D. Y., Mittal, A., & Sureshbabu, D. (2018). Utilitarian and Hedonic Motivations for Live Streaming Shopping. Proceedings of the 2018 ACM International Conference on Interactive Experiences for TV and Online Video - TVX 18. [Google Scholar]
  8. Cai, J., Wohn, D. Y. (2019). Live Streaming Commerce: Uses and Gratifications Approach to Understanding Consumers' Motivations. Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019, pp.2549–2557. [Google Scholar]
  9. Chen, M. F., Tung P. J., (2014). Developing an extended Theory of Planned Behavior model to predict consumers' intention to visit green hotels, International Journal of Hospitality Management, Volume 36, 2014, Pages 221–230, ISSN 0278-4319. [CrossRef] [Google Scholar]
  10. Chinanews (2021). Nine billion yuan of wealth of the wei Ya couple, the business map collapsed. Retrieved September 5, 2022, from [Google Scholar]
  11. Chiu, C.-M., Wang, E.T.G., Fang, Y.-H. and Huang, H.-Y. (2014), Understanding customers' repeat purchase intentions in B2C e-commerce: the roles of utilitarian value, hedonic value and perceived risk[J]. Information systems journal, 2014, 24(1), 85–114. [Google Scholar]
  12. Conner, M., & Sparks, P. (1996). The theory of planned behavior and health behaviors. In M. Conner, & P. Sparks (Eds.), Predicting health behavior: Research and practice with social cognition models. Buckingham: Open University Press. pp. 121–162. [Google Scholar]
  13. Davis, F., (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly 13 (3), 319–339. [CrossRef] [Google Scholar]
  14. E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S.D. Jin. (2017). A hierarchical characterization of a live streaming media workload. IEEE/ACM Transactions on Networking. [Google Scholar]
  15. Friedländer, M.B. (2017) “JISTaP Streamer Motives and User Generated Content on Social Live-Streaming Services”, J Inf Sci Theory Pract JISTaP 55(11), 65–84. [Google Scholar]
  16. George, J.F. (2002), “Influences on the intent to make Internet purchases”, Internet Research, 12(2), 165–80. [CrossRef] [Google Scholar]
  17. George, J. F. (2004). The theory of planned behavior and Internet purchasing. Internet Research, 14(3), 198–212. [CrossRef] [Google Scholar]
  18. Greaves, M., Lara D. Z., Chris S. (2013). Using the theory of planned behavior to explore environmental behavioral intentions in the workplace, Journal of Environmental Psychology, 34, 109–120, ISSN 0272-4944. [CrossRef] [Google Scholar]
  19. Ha, J., and Jang, S.C. (Shawn). (2009). Perceived values, satisfaction, and behavioral intentions: The role of familiarity in Korean restaurants, International Journal of Hospitality Management, 29(1), 2–13, ISSN 0278-4319 [Google Scholar]
  20. Haimson, O.L., and J.C. Tang. (2017), What Makes Live Events Engaging on Facebook Live, Periscope, and Snapchat, Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI’ 17, 48–60. [Google Scholar]
  21. Hansen, J.M., Saridakis, G., Benson, V., Risk. (2018). Trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions, Computers in Human Behavior, Volume 80, 2018, Pages 197–206, ISSN 0747-5632. [CrossRef] [Google Scholar]
  22. Hanzaee, K.H., & Rezaeyeh, S.P. (2013). Investigation of the effects of hedonic value and utilitarian value on customer satisfaction and behavioural intentions, African Journal of Business Management, 7(11), 818–825. [Google Scholar]
  23. Ho, S.S., Liao, Y., & Rosenthal, S. (2014). Applying the Theory of Planned Behavior and Media Dependency Theory: Predictors of Public Pro-environmental Behavioral Intentions in Singapore. Environmental Communication, 9(1), 77–99. [Google Scholar]
  24. Hoeksma, D.L., Gerritzen, M.A., Lokhorst, A. M., Poortvliet, P.M. (2017). An extended theory of planned behavior to predict consumers' willingness to buy mobile slaughter unit meat, Meat Science, 128, 15–23, ISSN 0309-1740. [CrossRef] [Google Scholar]
  25. Jarvenpaa, S.L. and Todd, P.A. (1997), “Is there a future for retailing on the Internet?”, in Peterson, R.A. (Eds.), Electronic Marketing and the Consumer, Sage, Thousand Oaks, CA, pp. 139–54. [Google Scholar]
  26. K. Pires, G. Simon, (2015). YouTube live and Twitch: a tour of user-generated live streaming systems. Proceedings of the 6th ACM Multimedia Systems Conference. [Google Scholar]
  27. Khalifa, M. and Limayem, M. (2003), “Drivers of Internet shopping”, Communications of the ACM, 46(12), 233–9. [CrossRef] [Google Scholar]
  28. Khare, A. (2011), Influence of hedonic and utilitarian values in determining attitude towards malls: A case of Indian small city consumers. J Retail Leisure Property, 9, 429–442. [CrossRef] [Google Scholar]
  29. Kim, Y. K., and Kang, J. K. (1997). Consumer perception of shopping costs and its relationship with retail trends. Journal of Shopping Center Research 4, 2: 27–62. Retrieved January 28, 2018. From [Google Scholar]
  30. Vijayasarathy, L.R. (2004). Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model. Information & Management, 41(6), 747–762. [CrossRef] [Google Scholar]
  31. Lin, P.W. (2006). The effects of consumers' online shopping goals and their characteristics on perceived interactivity and shopping behaviors. Retrieved August 24, 2022, from Missouri-Columbia University, Institute for MOspace Home Web site: [Google Scholar]
  32. Limayem, M., Khalifa, M. and Frini, A. (2000), What makes consumers buy from Internet? A longitudinal study of online shopping, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 30(4), 421–32. [CrossRef] [Google Scholar]
  33. M.E. Ruiz-Molina, and I. Gil-Saura. (2008). Perceived value, customer attitude and loyalty in retailing. J Retail Leisure Property, 7, 305–314. [CrossRef] [Google Scholar]
  34. Moon, M.A., Khalid, M.J., Awan, H.M., Attiq, S., Rasool, H. and Kiran, M. (2017). Consumer's perceptions of website's utilitarian and hedonic attributes and online purchase intentions: A cognitive-affective attitude approach, Spanish Journal of Marketing - ESIC, 21(2), 73–88, ISSN 2444-9695. [CrossRef] [Google Scholar]
  35. Overby, J.W., Lee E.J. (2006). The effects of utilitarian and hedonic online shopping value on consumer preference and intentions, Journal of Business Research, 59(10-11), 1160–1166, ISSN 0148-2963. [CrossRef] [Google Scholar]
  36. Pires, K., Simon, G. (2015). “YouTube Live and Twitch: A Tour of User-Generated Live Streaming Systems”, Proceedings of the 6th ACM Multimedia Systems Conference on - MMSys ’, 15, 225–230. [CrossRef] [Google Scholar]
  37. Paul, J., Ashwin, M., Jayesh, P. (2016). Predicting green product consumption using theory of planned behavior and reasoned action, Journal of Retailing and Consumer Services, 29, 123–134. [CrossRef] [Google Scholar]
  38. Sadiq, M.A., Rajeswari, B., Ansari, L., Kirmani, M.D. (2021).The role of food eating values and exploratory behaviour traits in predicting intention to consume organic foods: An extended planned behaviour approach, Journal of Retailing and Consumer Services, 59, 102352, ISSN 0969-6989. [CrossRef] [Google Scholar]
  39. Tang, J.C., G. Venolia, and K.M. Inkpen. (2016). “Meerkat and Periscope: I Stream, You Stream, Apps Stream for Live Streams”, Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems - CHI ’16, ACM Press, 4770–4780 [Google Scholar]
  40. Teo, H., Oh, L., Liu, C., Wei, K. (2003). An empirical study of the effects of interactivity on web user attitude. International Journal of HumanComputer Studies, 58, 281–305. [CrossRef] [Google Scholar]
  41. Vieira, A. B., da Silva, A. P. C., Henrique, F., Goncalves, G., & de Carvalho Gomes, P. (2013). SopCast P2P live streaming. Proceedings of the 4th ACM Multimedia Systems Conference on - MMSys’ 13. [Google Scholar]
  42. Xiang, Y., & Chae, S. W. (2021). Influence of Perceived Interactivity on Continuous Use Intentions on the Danmaku Video Sharing Platform: Belongingness Perspective. International Journal of Human-Computer Interaction, 1–21. [Google Scholar]
  43. Yadav, R., & Pathak, G. S. (2016). Young consumers’ intention towards buying green products in a developing nation: Extending the theory of planned behavior. Journal of Cleaner Production, 135, 732–739. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.