Open Access
SHS Web Conf.
Volume 165, 2023
The 2nd International Conference on Creative Industries and Knowledge Economy (CIKE 2023)
Article Number 01018
Number of page(s) 4
Section Creative Industry Development and Brand Management
Published online 03 May 2023
  1. Gomez, E; Brualla-Mora, A. An analysis of qualitative and quantitative morphokinetic parameters automatically annotated using CHLOE (Fairtility), an AI-based tool, finds AI score predictive of blastulation and ploidy[C]. HUMAN REPRODUCTION, 2022, 37: pp.I301-I302 [Google Scholar]
  2. Deng, FQ; Wan, Q. Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (5) :pp.2755-2766 [CrossRef] [Google Scholar]
  3. Arlery, M (Arlery, M); Rouviere, JL (Rouviere, JL); Widmann, F (Widmann, F). Quantitative characterization of GaN quantum-dot structures in AlN by high-resolution transmission electron microscopy [J]. APPLIED PHYSICS LETTERS, 1999:3287-3289 [CrossRef] [Google Scholar]
  4. Li, Z (Li, Zhen); Gu, JY (Gu, Jiayu); Ding, J (Ding, Jie). Molecular mechanism of ethanol-H-2 coproduction fermentation in anaerobic acidogenesis: Challenges and perspectives[J], BIOTECHNOLOGY ADVANCES, 2021. DOI: 10.1016/j.biotechadv.2020.10767 [Google Scholar]
  5. Sahu, SK (Sahu, Santosh Kumar) [1]; Mokhade, A (Mokhade, Anil) [1]; Bokde, ND (Bokde, Neeraj Dhanraj). An Overview of Machine Learning, Deep Learning, and Reinforcement Learning-Based Techniques in Quantitative Finance: Recent Progress and Challenges[J]. APPLIED SCIENCESBASEL[J], 2023(3) [Google Scholar]
  6. Zhang M, Pi D. A New Time Series Representation Model and Corresponding Similarity Measure for Fast and Accurate Similarity Detection[J]. IEEE Access, 2017, 5:24503-24519. [CrossRef] [Google Scholar]
  7. Rout A K, Dash P K, Dash R, et al. Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach[J]. Journal of King Saud University Computer and Information Sciences, 2015: S1319157815000944. [Google Scholar]
  8. Gomber P, Koch J A, Siering M. Digital Finance and FinTech: current research and future research directions [J]. ZEITSCHRIFT FUR BETRIEBSWIRTSCHAFT, 2017(5). DOI: 10.3390/en15228658 [Google Scholar]
  9. Alexander, S. Price movements in speculative markets: Trends or random walks[J]. Industrial Management Review, 1961(5):7-26. [Google Scholar]
  10. Zheng, LN (Zheng, Leina); Pan, TJ (Pan, Tiejun); Liu, J (Liu, Jun). Quantitative trading system based on machine learning in Chinese financial market[J], JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020: 38 (2), pp.1423-1433 [CrossRef] [Google Scholar]
  11. Risk management: Shefrin, Hersh, Statman, Meir. Behavioral Portfolio Theory[J]. Journal of Financial & Quantitative Analysis, 2000, 35(2):127-151. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.