Open Access
SHS Web Conf.
Volume 167, 2023
2023 2nd International Conference on Comprehensive Art and Cultural Communication (CACC 2023)
Article Number 01004
Number of page(s) 5
Section Art Appreciation and Film Image Research
Published online 18 May 2023
  1. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A Neural Algorithm of Artistic Style. arXiv preprint arXiv:1508.06576. [Google Scholar]
  2. Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4401-4410). [Google Scholar]
  3. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. [Google Scholar]
  4. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144. [CrossRef] [Google Scholar]
  5. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10684-10695). [Google Scholar]
  6. CSDN AIStudio. (2022). Machine Learning Notebook Generation of an Antagonistic Network (GAN) Overview and Getting Started Example. [Google Scholar]
  7. CSDN TensorFlow. (2019). Principle, advantages and disadvantages of GAN. [Google Scholar]
  8. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. [Google Scholar]
  9. CSDN GAN. (2022). Original GAN (DCGAN) defect. [Google Scholar]
  10. Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214-223). PMLR. [Google Scholar]
  11. Cao, H., Tan, C., Gao, Z., Chen, G., Heng, P. A., & Li, S. Z. (2022). A survey on generative diffusion model. arXiv preprint arXiv:2209.02646. [Google Scholar]
  12. Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840-6851. [Google Scholar]
  13. Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems, 34, 8780-8794. [Google Scholar]
  14. Roberts, G. O., & Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, 341-363. [CrossRef] [Google Scholar]
  15. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. [Google Scholar]
  16. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel, T., ... & Irani, M. (2022). Imagic: Text-based real image editing with diffusion models. arXiv preprint arXiv:2210.09276. [Google Scholar]
  17. Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1125-1134). [Google Scholar]
  18. The teaching and research team of the art communication direction of the Central Academy of Fine Arts. (2022). Art. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.